Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Реакции под действием нейтронов Ядерные реакции

Энергетические группы

Двигаясь в средах, нейтроны проявляют удивительное многообразие свойств. Нейтроны эффективно взаимодействуют с ядрами от самых малых достижимых энергий Tn ~ 10-7эВ до энергий в несколько сотен эВ. Нейтроны могут вступать с ядрами в различные ядерные реакции и поглощаться или испытывать на ядрах упругое или неупругое рассеяние, участвуя в диффузионном движении. Вероятности этих процессов определяется кинетической энергией нейтронов, и поэтому оказывается целесообразным разделение их по принадлежности к энергиям на определенные энергетические области или группы, для которых характерны определенные виды ядерных взаимодействий.

По величине кинетической энергии Tn нейтроны разделяются на две большие группы – медленные (0 < Tn≤ 1000 эВ) и быстрые (Tn > 100 кэВ). Замыкают эти две области энергий т.н. промежуточные нейтроны. В свою очередь, область медленных нейтронов подразделяется на холодные, тепловые и промежуточные нейтроны. Следует, однако, иметь в виду, что любая градация свойств нейтрона по энергии условна. Ниже дается одна из возможных схем подобной классификации.

холодные

                        Тn < 0,025 эВ,

тепловые                        Тn= 0,025 ¸ 0,5 эВ,

резонансные                   Тn= 0,5 эВ¸ 1 кэВ.

Промежуточные           Тn = 1 ¸ 100 кэВ.

Быстрые                         Тn= 100 кэВ¸ 14 МэВ.

При взаимодействии с веществом у холодных нейтронов отчетливо проявляются волновые свойства. Например, де-бройлевская длина волны нейтрона

(4.9.13)

становится сравнимой с размером атома (~ 10-8см) уже при энергии нейтрона Тn≈ 0,02 эВ. Нейтронные волны в веществе могут испытывать дифракцию, преломление, отражение (даже полное), могут поляризоваться. В отличие от рентгеновских лучей, которые испытывают рассеяние на электронах, нейтроны рассеиваются на ядрах. Поэтому дифракция холодных нейтронов дает информацию не об электронной, а непосредственно о ядерной, т.е. атомно-молекулярной конфигурации вещества. Дифракция холодных нейтронов позволяет производить кристаллографические исследования сплавов и соединений с близкими атомными номерами, когда рентгенографические исследования оказываются бессильными. Сечение захвата нейтронов ядрами с уменьшением энергии нейтронов сильно возрастает в соответствии с законом «1/vn», где vn - скорость нейтронов, и в этой энергетической области может иметь громадное значение.

Получение холодных нейтронов сложный и дорогостоящий технический процесс и по этой причине они не используются в ядерной энергетике.

Энергия Тn = 0,025 эВ определяет область тепловых нейтронов, которая соответствует комнатной температуре Т = 290 К и скорости нейтроновvn= 2200 м/с. Эти величины часто используются в качестве стандартных для тепловых нейтронов. Энергия тепловых нейтронов определяется тепловым равновесием со средой. Поэтому тепловые нейтроны имеют большой разброс по энергиям, а заметная доля нейтронов имеет энергию больше стандартной, равной kT. Температура в ядерном реакторе значительно превышает комнатную и поэтому к тепловым нейтронам относят обычно нейтроны с энергиями до ~ 0,5 эВ. Сечения реакций нейтронов с ядрами, в том числе и приводящие к делению, в этой области также достаточно велики.

Получение тепловых нейтронов в огромных количествах является хорошо освоенным процессом, и тепловые нейтроны находят широкое применение в ядерной энергетике.

Нейтроны с энергией Тn= 0,5 эВ¸ 1 кэВ называются резонансными потому, что в этой области для средних и тяжелых ядер сечения нейтронных реакций имеют обычно много тесно расположенных резонансов. В качестве примера на рис. 4.9.1 показана зависимость сечения деления 235Uот энергии нейтронов.

В промежуточнойобласти энергий нейтронов отдельные резонансы сливаются (исключением являются легкие ядра) и сечения в среднем падают с ростом энергии нейтронов.

Быстрые нейтроны имеют огромное прикладное значение, так как в большинстве реакций, используемых для получения свободных нейтронов, кинетическая энергия нейтронов Тn> 100 кэВ. В ядерной энергетике значение быстрых нейтронов определяется тем, что при делении ядер рождаются быстрые нейтроны со средней энергией ~ 2 МэВ.

Сечение взаимодействия быстрых нейтронов с ядрами существенно меньше, чем у тепловых или резонансных нейтронов.Полное сечение (сумма сечений всех возможных процессов) в быстрой области , гдеR - радиус ядра, а  - де-бройлевская длинаволны нейтрона (4.9.13). Главная особенность быстрой области состоит в том,что вероятность образования составного ядра в ней мала и полное сечение примерно равно сечениюрассеяния ss,которое равно сумме сечений упругого σel и неупругогорассеяния σnel:

(4.9.14)

При энергии нейтронов Тn> 8 МэВ сечение рассеяния на тяжелых ядрах снижается из-за конкуренции реакций (n,2n) и (n, f).

Быстрые нейтроны с энергией Тn> 10 МэВ имеют де-бройлевскую длину волны  порядка размеров ядра и нейтронная волна может испытывать дифракционное рассеяние уже на ядрах, а вероятность рассеяния нейтронов от угла рассеяния q имеет ярко выраженную картину дифракции с главным максимумом при q = 0° и побочными при qпорядка нескольких десятков градусов.

Быстрые нейтроны после их рождения при делении ядер могут быть использованы в ядерном оружии или в реакторах на быстрых нейтронах.


Инженерная графика

 

Сопромат