Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Механизм ядерных реакций Ядерная физика

Поглощение частицы а и образование составного ядра С еще не означает, что произошла ядерная реакция. Тип реакции определяется способом распада составного ядра. Согласно (4.2.2) энергия возбуждения составного ядра Wc  εa(С), поэтому всегда возможен вылет той же частицы, захват которой вызвал образование промежуточного ядра. Такой процесс называется резонансным рассеянием.

Составное ядро, которое имеет дискретный энергетический спектр, может оказаться в одном из возбужденных состояний только тогда, когда ему передается строго определенная порция энергии. Другими словами, если Еi – энергия одного из возбужденных уровней составного ядра, то образование составного возбужденного ядра возможно при условии

Wc = Еi

(4.2.3)

с точностью до естественной ширины уровня (см. (3.6.15)). Поскольку εa(С) есть постоянная величина для ядра, составленного из частицы а и ядра-мишени А, то выполнение условия (4.2.3), а следовательно, и образование составного промежуточного ядра возможно только при строго определенных величинах в (4.2.2). При всех других значениях кинетической энергии частицы а образование составного ядра невозможно и она будет испытывать рассеяние на потенциальном барьере ядра-мишени А. Такое рассеяние без образования составного ядра называется потенциальным рассеянием. Потенциальное рассеяние значительно более вероятно, чем образование составного ядра в том случае, когда уровни расположены достаточно редко  и Г <<D (см. (1.7.2)).

Однако рассмотренные выше необходимые энергетические условия образования возбужденного составного ядра не являются достаточными. Кроме энергии, каждый уровень возбуждения составного ядра характеризуется определенным значением спина Ic. Система а + А имеет собственный механический момент J, определяемый спинами Ia и IA частицы а и ядра-мишени А, а также орбитальным моментом  l их движения относительно общего центра инерции. Если положить l = 0 (столкновение имеет нулевой прицельный параметр), то суммарный момент J сталкивающихся частиц будет иметь, согласно правилу (1.6.8) сложения моментов в квантовой механике, значения от |Ia - IA| до |Ia + IA| через единицу. Следовательно, образование промежуточного ядра, в силу закона сохранения момента импульса (см. §4.4), даже при выполнении энергетических условий, возможно только в единственном случае, когда спин Ic одного из возможных уровней составного ядра равен одному из возможных значений J суммарного механического момента системы а + А. В остальных случаях будет наблюдаться потенциальное рассеяние. Случай l > 0 только увеличивает число значений J, но принципиально ничего не изменяет.

Факт образование составного ядра имеет экспериментальное подтверждение. Во-первых, наблюдаются т.н. резонансы – узкие пики на зависимости вероятности протекания реакции от кинетической энергии частиц а. Экспериментальное измерение ширины Г резонанса позволяет с помощью соотношения (3.6.15) оценить среднее время τ жизни составного ядра. Оказалось, что в ряде случаев среднее время жизни может достигать величины τ ≈ 10-14с, которое на много порядков превышает характерное время ядерного взаимодействия, примерно равного 10-23с (см. (1.9.17)). Второй экспериментальный факт в пользу образования составного ядра связан со сферической симметрией (изотропностью) распределения импульсов вылетающих частиц b в системе центра инерции составного ядра. Энергия, вносимая в составное ядро при захвате частицы а, быстро, за время ~ 10-22с, перераспределяется между нуклонами ядра и каждый из нуклонов имеет избыточную энергию существенно меньше средней энергии связи нуклонов в ядре. Выброс частицы b из составного ядра возможен только в результате концентрации энергии возбуждения на одном или группе нуклонов вблизи поверхности ядра, если вторичная частица сложная, а этот процесс длительный. Поэтому промежуточное ядро как бы «забывает» способ своего образования и в системе центра инерции наблюдается изотропное  распределение направлений вылета частицы b на втором этапе реакции при распаде составного ядра.

Когда кинетическая энергия частиц а существенно превышает среднюю энергию связи нуклона в ядре, нуклоны можно рассматривать как свободные и преобладающим механизмом протекания ядерных реакций становится прямое взаимодействие и переход от начального состояния ядра к конечному осуществляется прямо, непосредственно, без промежуточной стадии образования составного ядра в течение времени ~ 10-22с. В соответствии с этим механизмом бомбардирующая ядро-мишень А частица а непосредственно взаимодействует с одним или группой из периферийных нуклонов ядра.Реакции прямого взаимодействия отличаются от реакций с образованием составного ядра, прежде всего анизотропным (вытянутым по направлению движения бомбардирующей частицы а) распределением продуктов реакции в системе центра инерции частицы а и ядра-мишени А.

Соответственно для механизма прямого взаимодействия в энергетическом спектре вторичных частиц наблюдается избыток частиц с большей энергией по сравнению со спектром для механизма составного ядра.

Есликинетическая энергия  частиц а сравнима с энергией связи отдельных нуклонов, то с определенными вероятностями могут осуществляются оба механизма.

 


Инженерная графика

 

Сопромат