Паровой котел Описание паровых котлов типов ДКВР и Е (ДЕ) Вихревые горелки Автоматизированная система управления технологическими процессами Газотурбинная теплоэлектростанция Метрологическое обеспечение.

Останов прямоточных котлов можно вести как в прямоточном, так и в сепараторном режиме. Переход на сепараторный режим останова начинают при расходе среды, меньшем пропускной способности растопочного узла. Перед переходом на сепараторный режим открывают дроссельные клапаны 5 и 3 (Др-1 и Др-2) встроенного сепаратора 4 и расширителя Р-20

Химические «перекосы» в котловой воде

Одним из недостатков барабанных котлов без ступенчатого испарения, изготовляемых большинством зарубежных фирм, является наличие в них неорганизованных химических «перекосов» качества котловой воды по ширине топки (по длине барабана).

У нас в стране все котлы высокого давления изготовляются в варианте со ступенчатым испарением. Конструкция этих котлов создает в их котловой воде организованные химические «перекосы» по длине барабана. Часть обоих боковых экранов (4–6 % от общей поверхности экранов) выделяется в так называемые «солевые отсеки», где общее солесодержание котловой воды за счет их непрерывной продувки поддерживается на уровне в 5–6 раз выше, чем в остальных контурах котла, образующих «чистый отсек».

Наличие ступенчатого испарения создает в котле организованный проток котловой воды по длине чистого отсека (от середины барабана к его обоим торцам). Это препятствует созданию зон местного концентрирования котловой воды в какой-либо части ее по длине барабанов.

Однако и такое конструктивное решение полностью не гарантирует персонал от возникновения локальных зон ненормальной работы котлов при нарушении штатных условий их эксплуатации.

Проиллюстрируем это положение описанием трех случаев из практики.

Случай 1. В начале семидесятых годов на одной из ТЭЦ Белорусэнерго с котлами ТМ-84 на участках экранных труб в чистом отсеке котла с максимальным теплонапряжением имели место железо-фосфатные отложения, а под ними протекала интенсивная язвенная коррозия.

Для снижения относительной щелочности котловой воды до пределов норм ПТЭ на ТЭЦ при режиме форматирования использовалась смесь тринатрийфосфата и гексаметофосфата натрия (ТНФ и ГМФ).

С привлечением ЦКТИ были проведены некоторые исследования и, в частности, проверена интенсивность коррозионных процессов в экранных трубах по длине барабана котла с определением содержания водорода в насыщенном паре (из пяти точек по длине барабана).

Изучению были подвергнуты два режима фосфатирования: с использованием и без использования гексаметафосфата натрия (ГМФ).

Результаты опытов оказались неожиданными:

- при использовании ГМФ содержание водорода в паре по всем точкам контроля возрастало примерно в три раза (с 2 до 6 мкг/дм3);

- при обоих режимах наблюдался существенный химический «перекос» содержания водорода в паре по длине чистого отсека с правой стороны котла, содержание водорода в паре фиксировалось примерно в два раза выше, нежели с левой стороны.

Было рекомендовано прекратить использование ГМФ на ТЭЦ и обратить внимание на организацию топочного процесса в правой части топки.

Случай 2. На одной из ГРЭС Урала с котлами аналогичной конструкции Г.П. Сутоцкий обратил внимание на тот факт, что почти на всех котлах производят непрерывную продувку лишь по одному солевому отсеку.

Во втором солевом отсеке концентрация солей росла весьма медленно и продувка с этой стороны котла практически не требовалась.

По опыту прошлых лет Г.П. Сутоцкий предположил, что в топках котлов на ГРЭС имеются существенные тепловые «перекосы», не улавливаемые средствами теплотехнического контроля.

С привлечением Уралтехэнерго была произведена соответствующая наладка топочного режима котла. При этом было организовано введение топочного процесса по показателям степени концентрирования солей в солевых отсеках.

Согласно этому режиму, из обоих солевых отсеков была организована равномерная продувка (примерно 0,5 %) по показаниям двух индикаторов расхода продувочной воды.

Режим работы горелок регулировался согласно анализам котловой воды по показателям концентрации солей, которые стремились поддерживать одинаковыми с обеих сторон котла.

Проведенное мероприятие дало положительный эффект.

На котлах существенно сократились случаи выхода из строя экранных труб, работавших ранее с повышенным теплонапряжением.

Случай 3. В середине восьмидесятых годов на одной из ТЭЦ Ленэнерго с турбинами Т-100, ранее у аналогов которых на ТЭЦ Мосэнерго были обнаружены повреждения лопаток, связанные с качеством пара, НПО ЦКТИ изучал возможность неповторения подобной ситуации. Качество «среднего» пара, выдаваемого котлами данной ТЭЦ Ленэнерго, находилось в пределах норм ПТЭ.

Было предпринято, однако, углубленное исследование качества пара из нескольких точек одного из котлов по длине барабана с использованием высокочувствительного хлоридомера конструкции ЦКТИ-ЛТИ.

Во всех исследованных точках качество пара было вполне удовлетворительным (содержание хлоридов меньше 5 мг/дм3).

Исключением являлась одна из точек в середине барабана котла, где концентрация хлоридов в серии последовательных анализов выходила за пределы 20 мкг/дм3.

При остановке котла и вскрытии его барабана было обнаружено, что у двух циклонов сепарационного устройства на участке, близком к точке отбора насыщенного пара, были сорваны колпаки.

Данный случай подтверждает необходимость на всех котлах, кроме систематической проверки «среднего» качества насыщенного пара, также осуществлять его периодические анализы из нескольких точек по длине барабана.

4.5. Эффективна ли периодическая продувка котлов

в борьбе с железоокисным преобразованием?

Как было показано на практике, при прочих равных условиях степень осаждения оксидов железа на поверхностях нагрева тем выше, чем выше давление в котле. В котлах среднего и особенно низкого давления накипеобразующими свойствами обладают обычно только 20–30 % железосодержащих соединений. В котлах высокого давления размер выпадения в осадок оксидов железа повышается до 90 %. Ю.М. Кострикин показал, что за счет непрерывной продувки при ее размере, равном 1 %, из котла можно удалить не более 8 % соединений железа, поступающих в него вместе с питательной водой. Мнения специалистов об эффективности периодической («шламовой») продувки для данной цели не однозначны.

Для решения данного вопроса на одной из уральских ТЭЦ работниками ВТИ были проведены соответствующие исследования на котле ТП‑170. Для этого котел был оснащен общим для всех точек периодической продувки в чистом и солевом отсеке расширительным мерным баком и пробоотборной точкой. В течение месяца наблюдений среднее содержание соединений железа в питательной воде, котловой воде в чистом отсеке и котловой воде в солевом составило соответственно 38, 71 и 77 мкг/дм3. Согласно произведенным балансовым расчетам, это означало, что с непрерывной продувкой из котла удалялось 2 % соединений железа, в чистом и солевом отсеках их соответственно осаждалось 86 % и 12 %. При одном цикле периодической продувки (в течение одной минуты) удалялось в среднем 0,7 т. воды. Был изучен состав продувочной воды из 30 циклов продувки солевого и чистого отсеков. Анализом каждый раз определялось содержание в водошламовой смеси соединений железа, меди и взвешенных веществ. Средние данные этих анализов приведены в таблице.

Содержание соединений железа, меди

и взвешенных веществ в водошламовой смеси

Состав водошламовой смеси, мкг/дм3

Чистый отсек

Солевой отсек

Железо

25000

36000

Медь

22000

30000

Взвешенные вещества

49000

100000

Таблица содержит данные о продувке четырех точек с периодичностью один раз в 6 дней. Из этих данных следует, что содержание соединений железа и меди в продувочной воде из нижних точек котла примерно на два порядка выше, чем в котловой, отводимой через линию непрерывной продувки. Соответствие содержания обоих металлов подтверждают представительность анализов на железо, которые могли быть искажены за счет попадания в пробу воды продуктов коррозии из трубопроводов для продувки и отбора проб. Эффективность периодической продувки рассчитывается по следующей формуле:

где (FeКВ)ПП, FeПВ – концентрация соединений железа в воде из мерника и питательной воды;

Д·744 – производительность котла за месяц, т;

Ng – количество воды, удаленной в течение месяца с периодической продувкой, т;

P – величина непрерывной продувки, %;

К – кратность концентрирования растворимых солей;

(DFe)ПП – для чистого отсека (при К = 15) оказалась равна 6 %,

(DFe)ПП – для солевого отсека (при К = 5) была равна 2,5 %.

Суммарная эффективность периодической продувки при таком режиме составила (DFe)ПП = 6 + 2,5 = 8,5 %.

Специальными дополнительными опытами было установлено, что при переходе к ежесуточной продувке каждой нижней точки данного котла средствами его периодической продувки можно вывести до 25–30 % шлама.

Подобный эффект следует считать для периодической продувки котлов типовых конструкций предельно достижимым. В реальных условиях каждой ТЭЦ следует устанавливать оптимальный режим продувки нижних точек котлов, исходя из трудоемкости операций, допустимого износа запорной арматуры и эффективности процесса в целом, по изложенной методике. Достаточно полно решить проблему предупреждения железо-окисного накипеобразования можно только путем внедрения мероприятий по снижению содержания соединений железа в питательной воде или повышении их концентрации в котловой воде за счет стабилизационной обработки. Неожиданным результатом данной работы явился факт весьма высокой концентрации шлама в нижних коллекторах экранов. Ряд специалистов до этих опытов считали, что осаждение шлама в коллекторах невозможно из-за слишком высокой скорости воды в них (0,2–0,5 м/с). Исходя из чисто гравитационных представлений, упускались из вида силы адгазионного происхождения, при учете которых определяющую роль в удерживании шламовых частиц поверхностью коллекторов играют на скорости осаждения, а скорости витания, которые для горизонтальных труб достигают до 1,2–1,6 м/с.

Исходя из более поздних исследований, следует полагать, что для котлов высокого давления, где котловая вода содержит повышенное количество магнитных форм оксидов железа, в адгезионном процессе существенную, а может быть и определяющую роль играют силы магнитного взаимодействия.

Свищи в трубах котла появились до начала его эксплуатации В одной из котельных г. Тольятти котел типа ДЕ-25-141М, изготовленный в декабре 1978 г., был растоплен для щелочения в феврале 1981 г. и остановлен через два часа из-за появления свищей в экранных трубах. Повреждения подобного типа были обнаружены и в котле № 2. На всех трубах повреждения являлись результатом язвин, начинающихся со стороны натрубной обмуровки.

Почему разрушались трубы в поверхностном пароохладителе? На одной из ТЭЦ Урала в котлах, работающих при давлении 3,2 МПа с температурой перегрева пара 400 °С, происходил занос водорастворимыми солями выходной части пароперегревателя, расположенной за поверхностным пароохладителем. При этом качество насыщенного и перегретого пара, согласно производимым анализам, было удовлетворительным. Индивидуальная промывка змеевиков пароперегревателя от выпадающих в них солей показала, что заносу солями подвержены только несколько змеевиков, расположенных у торца промежуточного коллектора. Через торцевую стенку этого коллектора осуществлялся ввод и вывод змеевиков, через которые пропускалась питательная вода с температурой около 100 °С.

Основные причины аварийности тепловых сетей В России в 1924 г. была впервые практически осуществлена идея комбинированного производства тепла и электроэнергии, – энергетические преимущества которой неоспоримы.

Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска Основным производителем теплоносителя в Советском районе является ТЭЦ‑3, затем теплоноситель предприятием «Тепловые сети» передается посредникам города: ПТСК «Теплокомунэнерго» и жилищным управлениям (ЖКУ).

Белое море наступает на Архангельск 21 декабря 1992 г. на ВПУ ТЭЦ Архангельска, являющейся основным источником энергоснабжения города и ряда промышленных предприятий, резко поднялось солесодержание исходной воды: с 300 до 3500 мг/дм3, т.е. более чем в 10 раз. На ТЭЦ установлены шесть котлов высокого давления, которые «переваривают» только глубоко обессоленную воду (солесодержание меньше 2 мг/дм3).

При значительном снижении температуры газов интенсивность выноса влаги (брызгоунос) растет, что способствует развитию коррозионных процессов и отложений увлажненной золы в газоходах за золоуловителями и на лопатках дымососов. Увеличение расхода орошающей воды позволяет улучшить улавливание золы но одновременно повышает охлаждение газов и брызгоунос. Повышенный брызгоунос отмечается также при росте давления воды в соплах орошения. При ежесуточном осмотре золоуловителей проверяют их состояние, закрытие лазов, люков, отсутствие присосов, подачу орошающей воды.
Малая теплоэнергетика