Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Поверхности

Расположение плоскости относительно плоскостей проекций. Взаимное расположение двух плоскостей

По расположению относительно плоскостей проекций плоскости делят на плоскости общего и частного положения.

К плоскостям общего положения относятся плоскости, непараллельные и неперпендикулярные ни одной из плоскостей проекций. На комплексном чертеже (см. рис. 88) проекции элементов, которыми задана плоскость, как правило, занимают общее положение.

К плоскостям частного положения относятся плоскости, параллельные или перпендикулярные одной из плоскостей проекций.

Рис. 89

В свою очередь, плоскости частного положения делятся на проецирующие плоскости и плоскости уровня. К проецирующим плоскостям относятся плоскости, перпендикулярные одной из плоскостей проекций. Все проецирующие плоскости будем обозначать буквой Е. Проецирующие плоскости могут быть перпендикулярны П1, П2 или П3. В зависимости от этого различают горизонтально проецирующие плоскости, когда Sum_|_ П1 ; фронтально проецирующие плоскости, когда Sum_|_П2; профильно проецирующие плоскости, когда Sum_|_П3;

Проецирующая плоскость отличается тем, что проекция ее на плоскость проекций, ей перпендикулярную, всегда изображается в виде прямой линии и фигур, лежащих в проецирующей плоскости. Проекция плоскости, выраженной в прямой, вполне определяет положение плоскости относительно плоскостей проекций. Например, на рис. 89, а приведен комплексный чертеж плоскости I, заданной двумя параллельными прямыми. Из рисунка видно, что I (а \\ Ъ) является горизонтально проецирующей плоскостью и расположена под углом Р к фронтальной плоскости проекций и под углом у с фронтальной плоскостью проекций.

На рис. 89, б приведен комплексный чертеж плоскости Sum, составляющей угол а с горизонтальной плоскостью проекций и угол у с фронтальной плоскостью проекций. Это можно записать так: AВС ~ A2 ~ Sum2, B2 ~ Sum2, C2 ~ Sum2.

Наличие вырожденной проекции дает возможность задавать проецирующие плоскости на комплексном чертеже только одной проекцией. На рис. 89, в через точку А проведена профильно проецирующая плоскость (Sum_|_П3) под углом а к П1.

Все изображения, расположенные в заданной плоскости, на плоскости, не перпендикулярные ей, проецируются с искажением.

К плоскостям уровня относятся плоскости, параллельные одной из плоскостей проекций. Их можно считать дважды проецирующими

Рис. 90

плоскостями, так как у них на комплексном чертеже две проекции имеют вид прямой, расположенной под прямым углом к линии связи, а третья проекция дает изображение всех элементов, лежащих в этой плоскости, в натуральную величину. Плоскости уровня обычно обозначаются: Г— горизонтальная плоскость уровня; Ф — фронтальная плоскость уровня; U — профильная

плоскость уровня. На рис. 90, а дан комплексный чертеж плоскости горизонтального уровня (Г || П1); на рис. 90, б приведен комплексный чертеж плоскости фронтального уровня (Ф || П2), Ф э АВС, А2В2С2 — истинная величина треугольника ABC; на рис. 90, в показан комплексный чертеж профильно проецирующей плоскости (U || П3, u аА; А ~ а).

Плоскости уровня отличаются тем, что на плоскости проекций, им перпендикулярную, они проецируются в прямую линию, на которой располагаются точки, прямые и фигуры, расположенные в плоскости уровня. Эти прямые являются вырожденными проекциями заданной плоскости. На плоскость проекций, параллельную заданной плоскости, все изображения этой плоскости проецируются без искажений, т. е. в натуральную величину.

Две плоскости в пространстве могут быть параллельными или пересекаться. Параллельными будут плоскости, если одна из них задана пересекающимися прямыми, параллельными пересекающимся, за-

Рис. 91

дающим вторую плоскость; на рис. 91 показаны параллельные плоскости: Sum (ахb) и Sum2 (cxd), причем а || с, ab || d.

Если плоскости пересекаются, то линия их пересечения — прямая. Плоскости, перпендикулярные между собой, представляют случай их пересечения, когда угол между плоскостями составляет 90°.

Построение линий пересечения плоскостей рассматривается в §62.

Соединения сегментными шпонками:  конструкция и расчет.

Сегментная  шпонка является разновид­ностью призматической шпонки, так как принцип работы этой шпонки подобен прин­ципу работы призма­тической шпонки. Кон­струкция соединения с помощью сегментной шпонки показана на рис. Глубокая по­садка шпонки обеспе­чивает ей более устой­чивое положение, чем у простой призмати­ческой шпонки. Одна­ко глубокий паз значительно ослабляет вал, поэтому сегмент­ные шпонки применяют главным  образом для закрепления деталей на малонагруженных участках валах, например на концах валов. Аналогично соединению с призматической шпон­кой для сегментной шпонки  получим

При  длинных ступицах можно ставить в ряд по оси вала две сегментные шпонки.

Бывает, что такие шпонки считают еще и на срез .

 

Сечения: вынесенное и наложенное. Расположение сечения, сечения c цилиндрической поверхностью. Обозначения и надписи. Графическое обозначение материалов в сечениях. Выносные элементы, их определение и содержание. Применение выносных элементов. Расположение, изображение и обозначение выносных элементов. Условности и упрощения. Частные изображения симметрических видов разрезов и сечений
Инженерная графика и машиностроительное черчение