Косой изгиб Теории прочности

Сдвиг, смятие: деформации при сдвиге, закон Гука при сдвиге, уравнения прочности и жесткости при расчете на срез, Напряжения смятия, уравнения прочности при смятии. Кручение: деформации при кручении, напряжение кручения, уравнения прочности и жесткости.

Косой изгиб

 Под косым изгибом понимается такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис.5.27,а). Косой изгиб удобнее всего рассмотреть как одновременный изгиб бруса относительно главных осей x и y поперечного сечения бруса. Для этого общий вектор изгибающего момента М, действующего в поперечном сечении бруса, раскладывается на составляющие момента относительно этих осей (рис.5.27,б):

Mx=Msina;My=Mcosa.  (5.25)

 Введем следующее правило знаков для моментов Mx и My -
момент считается положительным, если в первой четверти координатной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.

Рис.5.27

 На основании принципа независимости действия сил нормальное напряжение в произвольной точке, принадлежащей к поперечному сечению бруса и имеющей координаты x,y, определяется суммой напряжений, обусловленных моментами Mx и My, т.е.

. (5.26)

 Подставляя выражения Mx и My из (5.25) в (5.26), получим:

.

 Из курса аналитической геометрии известно, что последнее выражение представляет собой уравнение плоскости. Следовательно, если в каждой точке сечения отложить по нормали вектор напряжения s, то концы векторов образуют геометрическое место точек, принадлежащих одной плоскости, как и при поперечном изгибе.

 Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, найдем, полагая в (5.26) s=0:

.

 Откуда определяется:

. (5.27)

 Поскольку свободный член в (5.27) равен нулю нейтральная линия всегда проходит через начало координат. Как видно из выражения (5.26), эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении возникают в точках наиболее удаленных от нейтральной линии. В том случае, когда сечение имеет простую форму (прямоугольник, круг), положение наиболее опасных точек легко определяется визуально. Для сечений, имеющих сложную форму, необходимо применить графический подход.

 Далее покажем, что при косом изгибе нейтральная линия не перпендикулярна к плоскости действия изгибающего момента, как это всегда выполнялось при поперечном изгибе. Действительно угловой коэффициент K1 следа момента (рис.5.27,б) равен:

K1=tga. (5.28)

  Угловой же коэффициент нейтральной линии, как это следует из (5.27), определяется выражением:

tg j=K2. (5.29)

 Так как в общем случае Ix¹Iy, то условие перпендикулярности прямых, известное из аналитической геометрии, не соблюдается, поскольку K1¹. Брус, образно выражаясь, предпочитает изгибаться не в плоскости изгибающего момента, а в некоторой другой плоскости, где жесткость на изгиб будет минимальной.

  Стальная балка АВ, расчетная схема и поперечное сечение которой показаны на рис.5.28,а, (c=0,03м) нагружена силами Р1 и Р2.

Вычислить наибольшие растягивающие и сжимающие нормальные напряжения. Вершины стрелок нормальных напряжений, определяемых по формуле (5.26) будут лежать на плоскости, пересекающей плоскость поперечного сечения по нулевой линии.

Выражение для прогибов fy(z) получаем с помощью метода начальных параметров:. (5.32).

Внецентренное растяжение и сжатие Внецентренное сжатие и растяжение как и косой изгиб относится к сложному виду сопротивления бруса.

Наибольшее напряжения, как и при косом изгибе, имеют место в точке наиболее удаленной от нейтральной линии.

Нахождение положения главных центральных осей. Так как поперечное сечение бруса (рис.5.33) имеет две оси симметрии xС и yС, то они и будут главными центральными осями инерции.

  Построить ядро сечения. Для построения ядра симметричного сечения рассмотрим два положения касательной к контуру сечения I-I и II-II (рис.5.33).

Сруктура механизмов: структурные элементы механизмов и задачи анализа, звенья и кинематические пары, кинематические цепи, основные виды механизмов: рычажные, кулачковые, фрикционные, зубчатые. Структурные формулы кинематических цепей и механизмов, структурный анализ и синтез механизмов.
Прочность при циклических нагрузках