Основы ядерной физики

Атомная энергетика
Ядерные реакторы
Тепловые контуры атомных станций
Реактор ВВЭР
Кипящие реакторы
Реактор РБМК
Реакторная установка МКЭР -1500
Реакторы на естественном уране
Газоохлаждаемые реакторы
Реакторы HTGR
Атомные электростанции с натриевым
теплоносителем
АЭС с реактором БН-350

БРЕСТ: быстрый реактор брест со
свинцовым теплоносителем

Основы ядерной физики
Строение атомного ядра
ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР
И ДЕФЕКТ МАСС
Ядерная реакция
Закон радиоактивного распада
Цепная ядерная реакция
Термоядерный синтез
Реакторы на быстрых нейтрона
Элементарная частица
Позитрон. Аннигиляция
Использование атомной энергетики
для решения проблем дефицита пресной воды
Ядерное опреснение
Варианты  плавучего энергоблока и
опреснительных установок
Схема процесса многостадийной
флеш-дистилляции для опреснения воды
Принципиальная гидравлическая схема
энергоопреснительного комплекса
Опыт использования опреснительных установок
в России и регионах мира
Проектирование и строительство
атомных энергоблоков
Работы по подготовке технологических решений
объектов атомной энергетики
Состав разделов проектной документации
Разделы проектной документации
Состав проектной документации
Особенности проектирования и конструкций
Проектирование линейных объектов
Техническое обследование зданий
Экспертиза проектной документации
Особенности компоновки АЭС на примере
проектных решений АЭС с ВВЭР-1200
Основным режимом работы АЭС является
работа в базовом режиме на 100 % мощности
Корпус реактора
Привод системы управления и защиты
Компоновка реакторного контура
Паровая турбина
Генеральный план
Здания и сооружения ядерного острова
Концепция безопасности
Радиационная и ядерная безопасность
производства
Социально-экономический аспект
обеспечения безопасности
Радиационная безопасность человека
Государственное нормирование в области
обеспечения радиационной безопасности
Обеспечение защиты населения

Реакторы на быстрых нейтронах:

Построены реакторы, работающие без замедлителя на быстрых нейтронах.

 Вероятность деления, вызванного быстрыми нейтронами мала такие реакторы не могут работать на естественном уране. Реакцию можно поддерживать лишь в обогащенной смеси, содержащей не менее 15% изотопа  .

Преимущество:

при их работе образуется значительное количество плутония, который затем можно использовать в качестве ядерного топлива.

Эти реакторы называют реакторами - размножителями, так как они воспроизводят делящийся материал.

При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Это видно из кривой зависимости удельной энергии связи от массового числа A.

Вплоть до ядер с массовым числом около 60 удельная энергия связи нуклонов растет с увеличением A. Поэтому синтез любого ядра с A < 60 из более легких ядер должен сопровождаться выделением энергии. Общая масса продуктов реакции синтеза будет в этом случае меньше массы первоначальных частиц.

Реакции слияния легких ядер носят название термоядерных реакций, так как они могут протекать только при очень высоких температурах. Чтобы два ядра вступили в реакцию синтеза, они должны сблизится на расстояние действия ядерных сил порядка 2·10–15 м, преодолев электрическое отталкивание их положительных зарядов. Для этого средняя кинетическая энергия теплового движения молекул должна превосходить потенциальную энергию кулоновского взаимодействия. Расчет необходимой для этого температуры T приводит к величине порядка 108–109 К. Это чрезвычайно высокая температура. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой,5 состояние тела. В мире не существуют такие материалы, которые смогли бы удержать такие температуры. 

Энергия, которая выделяется при термоядерных реакциях, в расчете на один нуклон в несколько раз превышает удельную энергию, выделяющуюся в цепных реакциях деления ядер. Так, например, в реакции слияния ядер дейтерия и трития 

выделяется 3,5 МэВ/нуклон. В целом в этой реакции выделяется 17,6 МэВ. Это одна из наиболее перспективных термоядерных реакций.

Осуществление управляемых термоядерных реакций даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии. Однако получение сверхвысоких температур и удержание плазмы, нагретой до миллиарда градусов, представляет собой труднейшую научно-техническую задачу на пути осуществления управляемого термоядерного синтеза.

На данном этапе развития науки и техники удалось осуществить только неуправляемую реакцию синтеза в водородной бомбе. Высокая температура, необходимая для ядерного синтеза, достигается здесь с помощью взрыва обычной урановой или плутониевой бомбы.

Термоядерные реакции играют чрезвычайно важную роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение.

Типы реакций:

1)Реакция дейтерий + тритий (Топливо D-T)

Самая легко осуществимая реакция — дейтерий + тритий:

2H + 3H = 4He + n при энергетическом выходе 17,6 МэВ (мегаэлектронвольт).

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток — выход нежелательной нейтронной радиации.

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона:

{}^{2}_{1}\mbox{H} + {}^{3}_{1}\mbox{H}  \rightarrow {}^{4}_{2}\mbox{He} + {}^{1}_{0}\mbox{n} + 17,6 \mbox{ MeV}.

Скругленный прямоугольник: Схема реакции дейтерий-тритийФайл:Deuterium-tritium fusion.svg

2)Реакция дейтерий + гелий-3

Существенно сложнее, на пределе возможного, осуществить реакцию дейтерий + гелий-3

2H + 3He = 4He + p  при энергетическом выходе 18,4 МэВ.

Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах в настоящее время не производится. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях; или добыт на Луне.

Сложность проведения термоядерной реакции можно характеризовать тройным произведением nTτ (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T.

3)Реакция между ядрами дейтерия (D-D, монотопливо)

Также возможны реакции между ядрами дейтерия, они идут немного труднее реакции с участием гелия-3:

 \mathrm{D} + \mathrm{D} \ \rightarrow \ \mathrm{p} + \mathrm{T} + 4{,}032 \; \mathrm{MeV}.

 \mathrm{D} + \mathrm{D} \ \rightarrow \ \mathrm{n} + {}^3\!\,\mathrm{He} + 3{,}268 \; \mathrm{MeV}.

В дополнение к основной реакции в ДД-плазме также происходят:

 \mathrm{p} + \mathrm{D} \ \rightarrow \ {}^3\!\,\mathrm{He} + \gamma + 5{,}4 \; \mathrm{MeV}.

 \mathrm{p} + \mathrm{T} \ \rightarrow \ {}^4\!\,\mathrm{He} + \gamma + 19{,}814 \; \mathrm{MeV}.

 \mathrm{D} + \mathrm{T} \ \rightarrow \ \mathrm{n} + {}^4\!\,\mathrm{He} + 17{,}589 \; \mathrm{MeV}.

 \mathrm{D} + \! ^3\mathrm{He} \ \rightarrow \ \mathrm{p} + {}^4\!\,\mathrm{He} + 18{,}353 \; \mathrm{MeV}.

 {}^3\!\,\mathrm{He} + \! ^3\mathrm{He} \ \rightarrow \ 2 \,\mathrm{p} + \, {}^4\!\,\mathrm{He} + 12{,}86 \; \mathrm{MeV}.

 \mathrm{T} + \mathrm{T} \ \rightarrow \ 2 \,\mathrm{n} + {}^4\!\,\mathrm{He} + 11{,}332 \; \mathrm{MeV}.

Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3, а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием.

Другие типы реакций

Возможны и некоторые другие типы реакций. Выбор топлива зависит от многих факторов — его доступности и дешевизны, энергетического выхода, лёгкости достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и т. д.

Условия:

Управляемый термоядерный синтез возможен при одновременном выполнении двух условий:

Скорость соударения ядер соответствует температуре плазмы:

T > 108 K (для реакции D-T).

Соблюдение критерия Лоусона:

nτ > 1014 см−3·с (для реакции D-T),

где n — плотность высокотемпературной плазмы, τ — время удержания плазмы в системе.

От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

Ядерный реактор. Термоядерный синтез

Элементарная частица – мельчайшие частицы материи, подчиненные условию, что они не являются атомными ядрами и атомами (исключение составляет протон); по этой причине их называют субъядерными.

Позитрон. Аннигиляция.Взаимные превращения элементарных частиц Открытие позитрона, частицы по своим характеристикам похожей на электрон, но имеющей в отличие от электрона положительный единичный заряд, было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона.

 Согласно данным ЮНЕСКО к 2050 году 7 миллиардов человек в 60 странах (по пессимистическим прогнозам) или 2 миллиарда человек в 48 странах (по оптимистическим прогнозам) столкнутся с проблемой нехватки воды. Пресная вода стремительно превращается в дефицитный природный ресурс.

Ядерное опреснение. В регионах, примыкающих к морям и океанам, возможно получение пресной воды из морской с помощью опреснительных установок. Однако процесс опреснения морской воды требует больших затрат тепловой или электрической энергии и поэтому весьма дорог и неэкологичен

Атомная энергетика