Безопасность атомных станций с реакторами ВВЭР, РБМК, ЭГП и БН



     В соответствии с федеральными законами в области использования атомной энергии, нормами и правилами по безопасности в 2003 году на атомных станциях выполнен большой объем работ по модернизации оборудования и систем с целью повышения их уровня безопасности и приведения к современным требованиям.
     Продолжались работы по основным направлениям деятельности концерна "Росэнергоатом", прежде всего в области повышения безопасности энергоблоков АЭС и обеспечения централизованного управления атомными станциями:
  • совершенствование централизованного управления и обеспечение безопасной эксплуатации АЭС со стороны подразделений эксплуатирующей организации - концерна "Росэнергоатом";
  • совершенствование и повышение эффективности работы Кризисного центра концерна;
  • обеспечение эффективной научно-технической поддержки эксплуатации АЭС со стороны научного центра концерна - ВНИИАЭС, других поддерживающих научных и проектно-конструкторских организаци
  • укрепление материально-технической базы и готовности отраслевого Аварийно-технического центра к ликвидации проектных и запроектных аварий;
  • расширение материально-технической базы и совершенствование работы отраслевых учебных центров подготовки эксплуатационного и ремонтного персонала;
  • обеспечение финансирования работ по повышению безопасности АЭС из централизованных источников.

     Основными приоритетами при эксплуатации энергоблоков АЭС являются:
  • обеспечение ядерной, радиационной, технической, пожарной, экологической безопасности и техники безопасности;
  • экономическая эффективность;
  • культура безопасности;
  • соблюдение норм и правил по безопасности.

Рассмотрение ситуации, предшествовавшей аварии на 4 блоке ЧАЭС показали, что возможны исключительные нарушения регламента и режимов работы оборудования которые в сочетании с положительным паровым эффектом реактивности большим по величине 4 5 эф и низкой скоростью ввода отрицательной реактивности системой управления и защиты в аварийных режимах могут привести к катастрофическим последствиям.
Поэтому основное содержание мероприятий по повышению безопасности реакторов РБМК, начиная с 1986г., сводилось к уменьшению парового эффекта реактивности и увеличению скорости ввода отрицательной реактивности системой СУЗ в режиме аварийной защиты.
Под паровым эффектом реактивности понимают ту реактивность, которая высвобождается при превращении воды, заполняющей технологические каналы в пределах активной зоны в пар, т.е. при изменении паросодержания на 100%.
Негативное влияние положительного парового эффекта реактивности на динамику реактора и его безопасность проявляется в том, что при таких изменениях параметров реактора как рост мощности, снижение давления в КМПЦ, снижение расхода питательной воды, снижение расхода воды в КМПЦ и др. приводит рост паросодержания, вносится положительная реактивность, приводящая к росту мощности.
При анализе мощностного эффекта реактивности сделан вывод о том, что при величине парового коэффициента реактивности 0,05 эф, который является составной частью быстрого мощностного коэффициента реактивности, устойчивость общей мощности реактора РБМК при больших выгораниях существенно зависит от взаимодействия всего оборудования энергоблока и настройки тепловой автоматики. В итоге при нормальной работе тепловой автоматики, эффект саморегулирования за счет отрицательного быстрого мощностного эффекта реактивности отсутствовал, все функции управления и обеспечения безопасности ложились на систему управления и защиты. Задачи управления реактором при нормальных условиях эксплуатации были решены путем разработки и внедрения системы локальных автоматических регуляторов.

При анализе безопасности считалось, что паровой коэффициент реактивности положительный при рабочих параметрах.
При дальнейшем снижении плотности воды расчетный паровой коэффициент уменьшался по величине и становился отрицательным. В итоге полный эффект обезвоживания считался нулевым и даже отрицательным.
После аварии на ЧАЭС этот вывод был подвергнут критике и расчетам с использованием более совершенных методик (метод Монте-Карло и др.). Было показано, что плотностной коэффициент реактивности топливной ячейки остается отрицательным во всем диапазоне изменения плотности воды, а суммарный эффект реактивности при обезвоживании активной зоны без ДП при рабочих параметрах в критическом состоянии положительный и примерно равен паровому эффекту реактивности.
Этот вывод был экспериментально подтвержден при экспериментах по обезвоживанию КМПЦ на реакторах 1, 2 блоков ЧАЭС и 1 блоке САЭС.

купить строительную технику
Атомные станции с реакторами РБМК 1000