Действие ионизирующих излучений Явление радиоактивности

Радиоактивность Воздействие радиации на человека

Механический и магнитный моменты атомных систем Оператор момента импульса. Квантование проекций и квадрата момента импульса. Классификация состояний по моменту импульса. Векторная модель сложения моментов импульса. Магнитный момент атомной системы, гиромагнитное отношение. Магнетон Бора. Прецессия моментов во внешнем магнитном поле. Опыт Штерна и Герлаха. Спин электрона и других микрочастиц. Полный момент атомной системы. Множитель Ланде. Спин-орбитальное взаимодействие.

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.
    В массовом сознании населения доминирует настороженное отношение к производствам, деятельность которых приводит к образованию радиоактивных изотопов и в первую очередь к предприятиям ядерного цикла. Этому способствуют как объективные (крупные аварии), так и субъективные (некомпетентность, искаженная картина в средствах массовой информации) факторы. При этом не принимаются во внимание два обстоятельства.
    Первое - это необходимость сравнительного подхода. Например, ценой за использование автомобиля являются десятки тысяч людей, ежегодно погибающих в авариях, еще большее количество получает травмы. Происходит загрязнение окружающей среды выхлопными газами автомобилей, особенно в густонаселенных городах. И это далеко не полный перечень негативных последствий от использования автомобильного транспорта.
    Второе обстоятельство — это экономическая и технологическая необходимость использования атомной энергии в современном мире.
    Привлекательность использования АЭС связана с ограниченностью и постоянным ростом стоимости энергоносителей для тепловых электростанций, меньшими радиоактивными и значительно более низкими химическими загрязнениями окружающей среды, гораздо меньшими объемами транспортных перевозок у предприятий ядерного цикла, отнесенными к единице производимой в конечном счете электроэнергии, по сравнению с аналогичными показателями для предприятий топливного цикла.
    Альтернативы использованию АЭС в глобальной экономике в настоящее время нет, а в обозримом будущем она может появиться только со стороны термоядерных установок.
    Первая в мире опытно-промышленная АЭС мощностью в 5 МВт была пущена в СССР 27 июня 1954 г. в г. Обнинске. В последующий период производство электроэнергии на АЭС быстро росло и в настоящее время в развитых странах они превратились в основного поставщика электроэнергии.
    Работа предприятий ядерного цикла в режиме нормальной эксплуатации не наносит человеку сколько-нибудь заметного вреда и значительно безопаснее последствий других видов деятельности. Аварии на АЭС значительно увеличивают экологическую угрозу, но не в большей степени, чем аварии на крупных химических производствах, бесконтрольное использование пестицидов и минеральных удобрений, аварии на транспорте и т.д.
    Следует также иметь в виду, что радиация, связанная с нормальным развитием ядерной энергетики, составляет лишь малую долю радиации, порождаемой деятельностью человека. Значительно большие дозы мы получаем от других источников, вызывающих меньше нареканий. Применение рентгеновских лучей в медицине, сжигание угля, использование воздушного транспорта, пребывание в хорошо герметизированных помещениях могут привести к значительному увеличению уровня облучения.
    Отметим, что и зарождение жизни на Земле и ее последующая эволюция протекали в условиях постоянного воздействия радиации.
    Хорошее знание свойств радиации и ее воздействия позволяет свести к минимуму связанный с ее использованием риск и по достоинству оценить те огромные блага, которые приносит человеку применение достижений ядерной физики в различных сферах

  Радиация - обобщенное понятие. Оно включает различные виды излучений, часть которых встречается природе, другие получаются искусственным путем. Электромагнитное излучение имеет широкий спектр энергий и различные источники: гамма-излучение атомных ядер и тормозное излучение ускоренных электронов, радиоволны Различные виды радиации по разному взаимодействуют с веществом в зависимости от типа испускаемых частиц, их заряда, массы и энергии. Заряженные частицы ионизируют атомы вещества, взаимодействуя с атомными электронами.    Прохождение электронов и позитронов через вещество отличается от прохождения тяжелых заряженных частиц. Главная причина - малые массы покоя электрона и позитрона. Это приводит к относительно большому изменению импульса при каждом столкновении, что вызывает заметное изменение направления движения электрона или позитрона и как результат - электромагнитное радиационное излучение.

Удельные потери электронов с кинетической энергией (Е) складываются из суммы ионизационных и радиационных потерь В связи с отсутствием у нейтронов электрического заряда они проходят в веществе без взаимодействий сравнительно большие расстояния, измеряемые сантиметрами Ослабление узкого коллимированного пучка нейтронов тонким слоем вещества происходит по экспоненциальному закону При прохождении через вещество фотоны (гамма-кванты) взаимодействуют с атомами, электронами и ядрами, в результате их интенсивность уменьшается. В органах и тканях биологических объектов как и в любой среде при облучении в результате поглощения энергии идут процессы ионизации и возбуждения атомов. Эти процессы лежат в основе биологического действия излучений. Его мерой служит количество поглощенной в организме энергии.

Общие спектральные закономерности. Формула Бальмера, комбинационный принцип. Несостоятельность классической физики для объяснения свойств атома. Постулаты Бора о стационарных состояниях и частотах излучения при квантовых переходах. Уровни энергии и оптические спектры. Упругие и неупругие столкновения. Опыт Франка и Герца. Фотоэлектронная спектроскопия и спектроскопия электронного удара. Модели атома по Бору и по Бору-Зоммерфельду. Изотопический сдвиг уровней. Лазерное разделение изотопов.
Примеры решения задач по атомной физике