Начертательная геометрия Лекции, примеры выполнения задания

Атомные станции России
Смоленская АЭС
Курская АЭС
Калининская АЭС
Кольская АЭС
Ростовская АЭС
Нововоронежская АЭС
Ленинградская АЭС
Билибинская АЭС
Белоярская АЭС
Балаковская АЭС
Безопасность АЭС
Экология
Модернизация АЭС
Перспективы
Соцкультбыт
Типы атомных станций
  • с реакторами РБМК 1000
  • с реакторами ВВЭР
  • с реакторами БН-600
  • Атомная энергетика
    Первая в мире атомная электростанция
    Юбилей Атомной энергетики
    Российские атомные ледоколы
    Ядерные реакторы
     
  • Ядерные топливные циклы
  • Безопасность АЭС
  • История атомной энергетики
  • Канальный кипящий графитовый реактор
  • Реакторы водо-водяного типа
  • Реакторы на быстрых нейтронах
  • Сравнение различных типов энергетических
    ядерных реакторов
  • Реакторы третьего поколения ВВЭР-1500
  • Безопасный быстрый реактор РБЕЦ
  • Энергетическая установка ГТ-МГР
  • ВАО АЭС
  • Импульсные реакторы 
  • Реактор БИГР (быстрый
    импульсный графитовый реактор)
  • Атомные батареи в космосе
  • Излучатели нейтронов
  • Изотопные источники электронов
  • Первый бетатрон для ускорения
    электронов
  • Альтернативная энергетика
    Курсовые проекты по ядерным реакторам
    Испытания ядерного оружия
     
  • Ядерные испытания том 1
  • Ядерные испытания том 2
  • Ядерное разоружение
  • Ядерное оружие
  • Ядерные испытания в Артике
     
  • Арктический ядерный полигон
  • Создание полигона
  • Подводные ядерные взрывы
  • Испытание оперативно-тактической
    ракеты
  • Аварии на ядерных реакторах
     
  • Чернобыльская катастрофа
  • Чернобыльская АЭС
  • Космические ядерные аварии
  • Курс Атомная энергетика
    Книга Укращение ядра
    Теплоэнергетика
    Малая теплоэнергетика
    Машиностроительное черчение
    и инженерная графика
    Приемы выполнения графических работ
    Инженерная графика
    Разъемные и неразъемные соединения
    Виды соединения деталей
    Работа в AutoCAD при выполнении чертежа
    Инженерная графика
    Аксонометрическая проекция
    Техническое черчение
    Компас-3d
    Лабораторные работы
    и задачи по электротехнике
    Трехфазные цепи
    Методы расчета электрической цепи
    Соединение нагрузки треугольником
    Преимущества трезфазных систем
    Расчет симметричных режимов работы
    трехфазных систем
    Расчет разветвленных однофазных цепей
    Расчет разветвленной магнитной цепи
    Математика
    Математика решение задач
    Линейная алгебра
    Дифференциальное исчисление
    Дифференциальные уравнения
    Теория вероятностей
    Математический анализ
    Геометрический смысл производной
    Числовые ряды
    функции комплексного переменного
    Вычислить интеграл Задачи и примеры
    Поверхностные и кратные интегралы
    Физические задачи

    Билеты к экзамену по высшей математике

    Компьютерная математика Mathematica
    Maple
    Матричная лаборатория MATLAB
    Физика
  • Электротехника
  • Кинематика, динамика, термодинамика
  • Электростатика, Магнетизм
  • Волновая и квантовая оптика
  • Физика в конспективном изложении
  • Законы геометрической оптики
  • Механизм ядерных реакций
  • Электромагнитные колебания
  • Ядерная физика
  • Строение и общие свойства атомных ядер
  • Модели атомных ядер
  • Радиоактивные превращения ядер
  • Ядерные реакции
  • Деление ядер
  • Курс Физика ядра и частиц
  • Сопротивление материалов
    Лабораторные работы по сопромату
  • Исследовать рабочую систему
    механизма редуктора
  • Лабораторные работы по сопромату
  • Содержание и задачи курса
    сопротивление материалов
  • Техническая механика
  • Балочные системы
  • Чертежи
  • Основные типы подшипников качения
  • Дизайн
     
  • Дизайн в промышленности
  • Западный и российский дизайн
  • История дизайна
  • Эргономика
  • Архитектура и проектирование
    промышленных изделий
  •  
    История искусства
    Техника иконописания
    Сюжеты древнерусской живописи
    Баухауз
    Информатика
    Информатика
    Турбо Паскаль
    Visual Studio
    Visual Foxpro
    Visual Basic
    CorelDRAW

    Новая технология .NET

     

    Позиционные задачи

    В данном модуле вы научитесь находить общий элемент пересекающихся геометрических фигур в пространстве, овладеете алгоритмом построения проекций элементов пересечения геометрических фигур, занимающих различное положение относительно плоскостей проекций.

    В технике детали большинства изделий имеют формы, представляющие собой поверхности, пересечённые либо плоскостями, либо другими поверхностями. Для того, чтобы проектировать и изготавливать такие изделия, необходимо научиться строить линии пересечения различных геометрических фигур. В этом вам поможет данный раздел начертательной геометрии.

    Позиционными задачами называют такие, в которых определяется взаимное расположение геометрических фигур в пространстве.

    Существует три типа позиционных задач:

    Взаимный порядок геометрических фигур.

    Взаимная принадлежность геометрических фигур.

    Взаимное пересечение геометрических фигур.

    Первые две задачи были рассмотрены в предыдущих разделах курса.. Взаимный порядок геометрических фигур - это расположение геометрических фигур относительно плоскостей проекций и наблюдателя: "ближе - дальше", "выше - ниже", "левее - правее" и т.д. Взаимная принадлежность геометрических фигур - это "точка принадлежит ...", "прямая принадлежит ..." и т.д.

    Рассмотрим подробнее всё многообразие решений третьего типа задач.

    Взаимное пересечение геометрических фигур.

    Две геометрические фигуры, пересекаясь, дают общий элемент:

    Прямая с прямой - точку (а Ç b Þ К).

    Прямая с плоскостью - точку (а Ç S Þ К).

    Прямая с поверхностью - одну или несколько точек (а Ç D Þ К, М ...).

    Плоскость с плоскостью - прямую линию (S Ç Г Þ а).

    Плоскость с поверхностью - плоскую кривую или плоскую ломаную (S Ç D Þ m).

    Поверхность с поверхностью - пространственную кривую или несколько пространственных кривых, которые, в свою очередь, могут состоять из плоских кривых или плоских ломаных (D Ç L Þ m).

    Из всего многообразия этих задач выделяются две общие задачи, которые называют главными позиционными задачами:

    Первая главная позиционная задача (1 ГПЗ) - пересечение линии с поверхностью (первые

    три задачи).

    Вторая главная позиционная задача (2 ГПЗ) - взаимное пересечение двух поверхностей

    (4, 5 и 6 задачи).

    При этом следует помнить, что плоскость - это частный случай поверхности, поэтому условимся пересечение плоскостей или плоскости с поверхностью относить ко 2 ГПЗ.

    При решении 2 ГПЗ сначала необходимо выяснить, что будет являться общим элементом у двух пересекающихся поверхностей. Чаще всего бывает следующее:

    а) Пересекаются два многогранника - общий элемент есть пространственная ломаная линия, состоящая из отдельных звеньев (каждое звено - прямая линия), как результат пересечения граней многогранников; звенья между собой соединены в точках А, В, С ..., которые представляют собой точки пересечения рёбер первого многогранника с гранями второго и наоборот (рис. 3-1).

    Позиционные задачи

    Рис. 3-1

    б) Пересекаются многогранник с кривой поверхностью (например, тор с пирамидой). Общий элемент - пространственная кривая линия, состоящая из отдельных звеньев. Каждое звено есть результат пересечения граней многогранника с кривой поверхностью (звенья m, n, k ...- есть плоские кривые). Звенья между собой соединены в точках А, В, С, D, которые представляют собой результат пересечения рёбер многогранника с кривой поверхностью (рис. 3-2а).

    Пересекаются многогранник с кривой поверхностью

    Рис. 3-2а

    Рис. 3-2б

    в) Пересекаются две кривые поверхности (например, сфера с конусом). Общий элемент - пространственная кривая линия (рис. 3-2б).

    Далее необходимо определить количество общих элементов пересекающихся поверхностей. Определяется оно в зависимости от характера пересечения поверхностей.

    Характер пересечения поверхностей

    Например, пересекаются конус Ф, окружность основания которого параллельна П1, и фронтально проецирующий цилиндр D (рис. 3-3).

    Такой характер пересечения, когда одна из поверхностей насквозь пронзает другую, называется чистое проницание. В этом случае линий пересечения две (на рис. 3-3 это m и n).

    Характер пересечения поверхностей

    Рис. 3-3

    Характер пересечения поверхностей, представленный на рис. 3-4, когда очерки поверхностей касаются в одной точке, является частным случаем проницания, когда линий пересечения две (m и n), но с одной общей точкой (А).

    Характер пересечения поверхностей

    Рис. 3-4

    Характер пересечения поверхностей, представленный на рис. 3-5, когда одна из поверхностей "вдавливается" в другую, называется вмятие. В этом случае линия пересечения одна (на рис. 3-5 это - m).

    Характер пересечения поверхностей

    Рис. 3-5

    Решение главных позиционных задач. 3 случая. 3 алгоритма. Способ решения главных позиционных задач, или алгоритм решения, зависит от расположения пересекающихся геометрических фигур относительно плоскостей проекций.

    Решение задач в случае, когда одна из пересекающихся фигур проецирующая, вторая - непроецирующая.

    Конические сечения Решение второй главной позиционной задачи по 2 алгоритму рассмотрим на примере конических сечений. Ещё в Древней Греции был известен тот факт, что при пересечении конуса различными плоскостями можно получить прямые линии, кривые второго порядка и, как вырожденный случай, точку

    Задача: Построить линию пересечения сферы S и горизонтально проецирующей призмы Г

    Решение задач в случае, когда обе пересекающиеся фигуры - непроецирующие. В данном случае задача усложняется тем, что на чертеже нет главной проекции ни у одной из пересекающихся фигур. Поэтому для решения таких задач специально вводят вспомогательную секущую поверхность-посредник, которая пересекает обе фигуры, выявляя общие точки. Эта поверхность-посредник может быть проецирующей, и тогда решение задачи можно свести ко 2 алгоритму, или непроецирующей (например, сфера - посредник). Решение первой и второй ГПЗ рассмотрим отдельно.

    Задача: Найти точки пересечения пирамиды Г(SABC) с прямой а

    Частные случаи пересечения поверхностей вращения второго порядка Пересечение соосных поверхностей вращения.

    Инженерная графика