Начертательная геометрия Лекции, примеры выполнения задания

Атомные станции России
Смоленская АЭС
Курская АЭС
Калининская АЭС
Кольская АЭС
Ростовская АЭС
Нововоронежская АЭС
Ленинградская АЭС
Билибинская АЭС
Белоярская АЭС
Балаковская АЭС
Безопасность АЭС
Экология
Модернизация АЭС
Перспективы
Соцкультбыт
Типы атомных станций
  • с реакторами РБМК 1000
  • с реакторами ВВЭР
  • с реакторами БН-600
  • Атомная энергетика
    Первая в мире атомная электростанция
    Юбилей Атомной энергетики
    Российские атомные ледоколы
    Ядерные реакторы
     
  • Ядерные топливные циклы
  • Безопасность АЭС
  • История атомной энергетики
  • Канальный кипящий графитовый реактор
  • Реакторы водо-водяного типа
  • Реакторы на быстрых нейтронах
  • Сравнение различных типов энергетических
    ядерных реакторов
  • Реакторы третьего поколения ВВЭР-1500
  • Безопасный быстрый реактор РБЕЦ
  • Энергетическая установка ГТ-МГР
  • ВАО АЭС
  • Импульсные реакторы 
  • Реактор БИГР (быстрый
    импульсный графитовый реактор)
  • Атомные батареи в космосе
  • Излучатели нейтронов
  • Изотопные источники электронов
  • Первый бетатрон для ускорения
    электронов
  • Альтернативная энергетика
    Курсовые проекты по ядерным реакторам
    Испытания ядерного оружия
     
  • Ядерные испытания том 1
  • Ядерные испытания том 2
  • Ядерное разоружение
  • Ядерное оружие
  • Ядерные испытания в Артике
     
  • Арктический ядерный полигон
  • Создание полигона
  • Подводные ядерные взрывы
  • Испытание оперативно-тактической
    ракеты
  • Аварии на ядерных реакторах
     
  • Чернобыльская катастрофа
  • Чернобыльская АЭС
  • Космические ядерные аварии
  • Курс Атомная энергетика
    Книга Укращение ядра
    Теплоэнергетика
    Малая теплоэнергетика
    Машиностроительное черчение
    и инженерная графика
    Приемы выполнения графических работ
    Инженерная графика
    Разъемные и неразъемные соединения
    Виды соединения деталей
    Работа в AutoCAD при выполнении чертежа
    Инженерная графика
    Аксонометрическая проекция
    Техническое черчение
    Компас-3d
    Лабораторные работы
    и задачи по электротехнике
    Трехфазные цепи
    Методы расчета электрической цепи
    Соединение нагрузки треугольником
    Преимущества трезфазных систем
    Расчет симметричных режимов работы
    трехфазных систем
    Расчет разветвленных однофазных цепей
    Расчет разветвленной магнитной цепи
    Математика
    Математика решение задач
    Линейная алгебра
    Дифференциальное исчисление
    Дифференциальные уравнения
    Теория вероятностей
    Математический анализ
    Геометрический смысл производной
    Числовые ряды
    функции комплексного переменного
    Вычислить интеграл Задачи и примеры
    Поверхностные и кратные интегралы
    Физические задачи

    Билеты к экзамену по высшей математике

    Компьютерная математика Mathematica
    Maple
    Матричная лаборатория MATLAB
    Физика
  • Электротехника
  • Кинематика, динамика, термодинамика
  • Электростатика, Магнетизм
  • Волновая и квантовая оптика
  • Физика в конспективном изложении
  • Законы геометрической оптики
  • Механизм ядерных реакций
  • Электромагнитные колебания
  • Ядерная физика
  • Строение и общие свойства атомных ядер
  • Модели атомных ядер
  • Радиоактивные превращения ядер
  • Ядерные реакции
  • Деление ядер
  • Курс Физика ядра и частиц
  • Сопротивление материалов
    Лабораторные работы по сопромату
  • Исследовать рабочую систему
    механизма редуктора
  • Лабораторные работы по сопромату
  • Содержание и задачи курса
    сопротивление материалов
  • Техническая механика
  • Балочные системы
  • Чертежи
  • Основные типы подшипников качения
  • Дизайн
     
  • Дизайн в промышленности
  • Западный и российский дизайн
  • История дизайна
  • Эргономика
  • Архитектура и проектирование
    промышленных изделий
  •  
    История искусства
    Техника иконописания
    Сюжеты древнерусской живописи
    Баухауз
    Информатика
    Информатика
    Турбо Паскаль
    Visual Studio
    Visual Foxpro
    Visual Basic
    CorelDRAW

    Новая технология .NET

     

    Методы проецирования. Основные свойства проецирования. Комплексный чертеж точки, прямой линии, кривой линии

    В этом разделе Вы познакомитесь с понятием несобственных элементов (точек, прямых, плоскостей), которые упрощают решение многих задач

    Тень от треугольника может иметь форму треугольника или полосы (Рис. 1-1 и 1-2)

    Методы проецирования. Основные свойства проецирования

    Рис. 1-1

    Тень от треугольника имеет форму треугольника

    Тень от треугольника имеет форму треугольника

    Рис. 1-2

    Тень от треугольника имеет форму полосы

    Как Вы думаете?

    Какие еще формы может принимать тень от треугольника?

    В курсе элементарной геометрии изучается трехмерное пространство, названное евклидовым по имени греческого ученого Евклида, описавшего его основные своиства и закономерности. Однако положений евклидовой геометрии недостаточно для выполнения некоторых операций проецирования.

    Развитие науки привело к расширению понятия пространства, так как вселенная представляется теперь состоящей из искривленных пространств. Это позволило дополнить привычное для нас евклидово пространство новыми элементами - бесконечно удаленной точкой, прямой, плоскостью. Для того, чтобы получить соответствующие элементы в тех случаях, когда их не оказывается при выполнении операции проецирования, достаточно потребовать, чтобы две параллельные прямые считались пересекающимися, при этом точку их пересечения называют несобственной точкой или бесконечно удаленной. Это понятие было введено в 1636 году французским математиком Жаном Дезаргом, графические доказательства [Фролов, стр. 14].

    Будем считать, что:

    1) две параллельные прямые пересекаются в единственной несобственной точке

    m || n « m Ç n = М ¥

    2) две параллельные плоскости пересекаются по единственной несобственной прямой:

    S || Г « S Ç Г = а¥

    Рис. 1-3

    Рис. 1-4

    Вывод.

    Несобственные элементы позволяют создать более строгую теорию метода проецирования.

    Методы проецирования

    В этом разделе Вы освоите основной метод начертательной геометрии - проецирование. Рассмотрите центральное проецирование; параллельное проецирование; ортогональное проецирование.

    Основной метод начертательной геометрии - метод проецирования

    Различают:

    1. центральное проецирование

    2. параллельное проецирование

    3. ортогональное проецирование

    Аппарат проецирования

    Методы проецирования

    Рис. 1-5

    П1 -плоскость проекций (картинная плоскость)

    S - центр проецирования

    А - точка в пространстве

    А1 - проекция точки

    lA - проецирующий луч

    Спецификой курса начертательной геометрии является то, что изучение ведется на абстрактных геометрических фигурах: точка, линия, плоскость, поверхность. Мы будем изучать принципы построения изображений этих фигур на плоскости.

    Прежде всего дадим определение простейшим геометрическим фигурам: точке и линии.

    Точка - это нульмерная геометрическая фигура, неделимый элемент пространства, т.е. она не может быть определена другими более элементарными понятиями.

    Обозначается - А,В,С...- прописными буквами латинского алфавита. или цифрами. Точка не имеет размеров, то что мы показываем на чертеже точку в виде какой - то площади, пересечением двух линий или кружочком, является лишь ее условным изображением.

    Линия - одномерная геометрическая фигура, обозначается строчными буквами латинского алфавита - а,в,с...В начертательной геометрии линия определяется кинематически, как траектория непрерывно движущейся точки в пространстве, а рассматриваются следующие линии:

    1. Прямая

    2. Отрезок

    3. Ломаная - состоящая из отрезков

    4. Кривая

    Центральное проецирование

    Проецирование, когда проецирующий луч проходит через фиксированную точку S, называется центральным. На рис. 1-6 показано построение центральных проекций некоторых точек и прямой.

    Центральное проецирование

    Рис. 1-6

    П1 -плоскость проекций (картинная плоскость)

    S - центр проецирования

    В, С, D - точки в пространстве

    С1, В1, D1 - проекции точек

    lB, lC, lD - проецирующие лучи

    S - плоскость, проведенная через центр проецирования S и прямую а.

    АМ - прямая в пространстве

    А1М1 - проекция прямой (или отрезка)

    Через точку S (центр проецирования) и точку В проведем проецирующий луч lВ, отметим точку пересечения проецирующего луча с картинной плоскостью: S Î lВ, B Î lВ, lВ Ç П1 = В1, на чертеже видно, что каждой точке пространства соответствует единственная проекция на плоскости.

    Аналогично точке В можно построить проекцию любой точки пространства, например точки С

    С1 = lС Ç П1, если С Î П1, то С = С1.

    Если lD || П1, то проекцией точки D Þ D1 служит несобственная точка плоскости П1.

    По принципу центрального проецирования работают фото - и кинокамеры. Упрощенная схема работы человеческого глаза близка к этому виду проецирования. Изображения, построенные по принципу центрального проецирования, наиболее наглядны и их широко используют в своей работе архитекторы, дизайнеры, геологи и др.

    Описанным методом центрального проецирования может быть построена проекция любой точки геометрической фигуры, а, следовательно, и проекция самой фигуры. Например , центральную проекцию отрезка АМ на плоскость П1 можно построить как линию пересечения плоскости S, проведенной через центр S и прямую АВ, с плоскостью проекций. Так как две плоскости пересекаются по единственной прямой, то проекция прямой есть прямая, и притом, единственная, т. е. S É S, АМ; S Ç П1

    Параллельное проецирование Проецирование называется параллельным, если центр проецирования удален в бесконечность, а все проецирующие лучи параллельны заданному направлению s.

    Метод Монжа В машиностроительных чертежах используется метод прямоугольных проекций. Поэтому дальнейшее изучение курса будем вести, используя метод ортогонального проецирования.

    Доказательство обратимости чертежа Монжа Если по плоскому изображению можно определить натуральную длину отрезка и его ориентацию в пространстве, значит реконструирование пространства возможно, то есть однозначно решается вторая (обратная) задача курса начертательной геометрии.

    Трёхкартинный комплексный чертёж точки Двухкартинный чертёж является метрически определённым чертежом, то есть он вполне определяет форму и размеры фигуры и её ориентацию в пространстве. Однако, часто комплексный чертёж становится более ясным, если помимо двух основных проекций дана ещё одна проекция на третью плоскость. В качестве такой плоскости применяют профильную плоскость проекций П3.

    Комплексный чертеж линии В этом разделе Вы узнаете, что линии подразделяются на прямые и кривые. Проекции прямой линии могут занимать общее или частное положение относительно плоскостей проекций. Различают кривые линии плоские и пространственные; закономерные и незакономерные.

    Проецирующие прямые Прямые, перпендикулярные какой - либо плоскости проекций, называются проецирующими прямыми.

    Пресекающиеся прямые Прямые называются пересекающимися, если они имеют единственную общую точку. Они всегда лежат в одной плоскости.

    Комплексный чертеж кривых линий Линия задается кинематически - как траектория непрерывно перемещающейся точки в пространстве. Линии применяются не только для выполнения изображений различных геометрических фигур, но и позволяют решать многие научные и инженерные задачи. Например, с помощью линии можно создавать наглядные модели многих процессов, и исследовать функциональную зависимость между различными параметрами. Кривую линию можно рассматривать как линию пересечения двух поверхностей.

    Свойства проекций кривых линий Свойства кривых линий и их проекций позволяют наглядно демонстрировать физические, химические, электрические процессы. В геометрии кривые линии - это линии пересечения поверхностей.

    Комплексный чертеж пространственной кривой. Цилиндрическая винтовая линия Из закономерных пространственных кривых наибольшее практическое применение находят винтовые линии: цилиндрические и конические.

    Инженерная графика