Начертательная геометрия Примеры выполнения курсовой

Атомные станции России
Смоленская АЭС
Курская АЭС
Калининская АЭС
Кольская АЭС
Ростовская АЭС
Нововоронежская АЭС
Ленинградская АЭС
Билибинская АЭС
Белоярская АЭС
Балаковская АЭС
Безопасность АЭС
Экология
Модернизация АЭС
Перспективы
Соцкультбыт
Типы атомных станций
  • с реакторами РБМК 1000
  • с реакторами ВВЭР
  • с реакторами БН-600
  • Атомная энергетика
    Первая в мире атомная электростанция
    Юбилей Атомной энергетики
    Российские атомные ледоколы
    Ядерные реакторы
     
  • Ядерные топливные циклы
  • Безопасность АЭС
  • История атомной энергетики
  • Канальный кипящий графитовый реактор
  • Реакторы водо-водяного типа
  • Реакторы на быстрых нейтронах
  • Сравнение различных типов энергетических
    ядерных реакторов
  • Реакторы третьего поколения ВВЭР-1500
  • Безопасный быстрый реактор РБЕЦ
  • Энергетическая установка ГТ-МГР
  • ВАО АЭС
  • Импульсные реакторы 
  • Реактор БИГР (быстрый
    импульсный графитовый реактор)
  • Атомные батареи в космосе
  • Излучатели нейтронов
  • Изотопные источники электронов
  • Первый бетатрон для ускорения
    электронов
  • Альтернативная энергетика
    Курсовые проекты по ядерным реакторам
    Испытания ядерного оружия
     
  • Ядерные испытания том 1
  • Ядерные испытания том 2
  • Ядерное разоружение
  • Ядерное оружие
  • Ядерные испытания в Артике
     
  • Арктический ядерный полигон
  • Создание полигона
  • Подводные ядерные взрывы
  • Испытание оперативно-тактической
    ракеты
  • Аварии на ядерных реакторах
     
  • Чернобыльская катастрофа
  • Чернобыльская АЭС
  • Космические ядерные аварии
  • Курс Атомная энергетика
    Книга Укращение ядра
    Теплоэнергетика
    Малая теплоэнергетика
    Машиностроительное черчение
    и инженерная графика
    Приемы выполнения графических работ
    Инженерная графика
    Разъемные и неразъемные соединения
    Виды соединения деталей
    Работа в AutoCAD при выполнении чертежа
    Инженерная графика
    Аксонометрическая проекция
    Техническое черчение
    Компас-3d
    Лабораторные работы
    и задачи по электротехнике
    Трехфазные цепи
    Методы расчета электрической цепи
    Соединение нагрузки треугольником
    Преимущества трезфазных систем
    Расчет симметричных режимов работы
    трехфазных систем
    Расчет разветвленных однофазных цепей
    Расчет разветвленной магнитной цепи
    Математика
    Математика решение задач
    Линейная алгебра
    Дифференциальное исчисление
    Дифференциальные уравнения
    Теория вероятностей
    Математический анализ
    Геометрический смысл производной
    Числовые ряды
    функции комплексного переменного
    Вычислить интеграл Задачи и примеры
    Поверхностные и кратные интегралы
    Физические задачи

    Билеты к экзамену по высшей математике

    Компьютерная математика Mathematica
    Maple
    Матричная лаборатория MATLAB
    Физика
  • Электротехника
  • Кинематика, динамика, термодинамика
  • Электростатика, Магнетизм
  • Волновая и квантовая оптика
  • Физика в конспективном изложении
  • Законы геометрической оптики
  • Механизм ядерных реакций
  • Электромагнитные колебания
  • Ядерная физика
  • Строение и общие свойства атомных ядер
  • Модели атомных ядер
  • Радиоактивные превращения ядер
  • Ядерные реакции
  • Деление ядер
  • Курс Физика ядра и частиц
  • Сопротивление материалов
    Лабораторные работы по сопромату
  • Исследовать рабочую систему
    механизма редуктора
  • Лабораторные работы по сопромату
  • Содержание и задачи курса
    сопротивление материалов
  • Техническая механика
  • Балочные системы
  • Чертежи
  • Основные типы подшипников качения
  • Дизайн
     
  • Дизайн в промышленности
  • Западный и российский дизайн
  • История дизайна
  • Эргономика
  • Архитектура и проектирование
    промышленных изделий
  •  
    История искусства
    Техника иконописания
    Сюжеты древнерусской живописи
    Баухауз
    Информатика
    Информатика
    Турбо Паскаль
    Visual Studio
    Visual Foxpro
    Visual Basic
    CorelDRAW

    Новая технология .NET

     

    Методы проецирования. Основные свойства проецирования. Комплексный чертеж точки, прямой линии, кривой линии В этом разделе Вы познакомитесь с понятием несобственных элементов (точек, прямых, плоскостей), которые упрощают решение многих задач

    Параллельное проецирование Проецирование называется параллельным, если центр проецирования удален в бесконечность, а все проецирующие лучи параллельны заданному направлению s.

    Метод Монжа В машиностроительных чертежах используется метод прямоугольных проекций. Поэтому дальнейшее изучение курса будем вести, используя метод ортогонального проецирования.

    Доказательство обратимости чертежа Монжа Если по плоскому изображению можно определить натуральную длину отрезка и его ориентацию в пространстве, значит реконструирование пространства возможно, то есть однозначно решается вторая (обратная) задача курса начертательной геометрии.

    Начертательная геометрия Точка в ортогональной системе двух плоскостей проекций.

    Трёхкартинный комплексный чертёж точки Двухкартинный чертёж является метрически определённым чертежом, то есть он вполне определяет форму и размеры фигуры и её ориентацию в пространстве. Однако, часто комплексный чертёж становится более ясным, если помимо двух основных проекций дана ещё одна проекция на третью плоскость. В качестве такой плоскости применяют профильную плоскость проекций П3.

    Комплексный чертеж линии В этом разделе Вы узнаете, что линии подразделяются на прямые и кривые. Проекции прямой линии могут занимать общее или частное положение относительно плоскостей проекций. Различают кривые линии плоские и пространственные; закономерные и незакономерные.

    Проецирующие прямые Прямые, перпендикулярные какой - либо плоскости проекций, называются проецирующими прямыми.

    Пресекающиеся прямые Прямые называются пересекающимися, если они имеют единственную общую точку. Они всегда лежат в одной плоскости.

    Комплексный чертеж кривых линий Линия задается кинематически - как траектория непрерывно перемещающейся точки в пространстве. Линии применяются не только для выполнения изображений различных геометрических фигур, но и позволяют решать многие научные и инженерные задачи. Например, с помощью линии можно создавать наглядные модели многих процессов, и исследовать функциональную зависимость между различными параметрами. Кривую линию можно рассматривать как линию пересечения двух поверхностей.

    Свойства проекций кривых линий Свойства кривых линий и их проекций позволяют наглядно демонстрировать физические, химические, электрические процессы. В геометрии кривые линии - это линии пересечения поверхностей.

    Комплексный чертеж пространственной кривой. Цилиндрическая винтовая линия Из закономерных пространственных кривых наибольшее практическое применение находят винтовые линии: цилиндрические и конические.

    Взаимная принадлежность точки, прямой и плоскости Точка принадлежит плоскости, если она принадлежит какой-нибудь прямой, лежащей в этой плоскости. Построение точки в плоскости сводится к двум операциям: построению в плоскости вспомогательной прямой и построению точки на этой прямой.

    Горизонтальная плоскость уровня

    Линия наибольшего наклона плоскости Это прямая, принадлежащая плоскости и перпендикулярная одной из линий уровня плоскости. С её помощью определяют угол наклона заданной плоскости к одной из плоскостей проекций. Условимся линию наибольшего наклона плоскости к П1 обозначать буквой g , к П2 - буквой е.

    Прямая, параллельная плоскости Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости.

    Задание поверхности на комплексном чертеже В этом разделе Вы узнаете, что поверхности подразделяются на линейчатые и нелинейчатые. Научитесь задавать и конструировать поверхности. Строить точки и линии по принадлежности поверхности. Узнаете, чем отличается цилиндрическая линейчатая поверхность от цилиндра вращения и цилиндроида.

    Задание линейчатых поверхностей на комплексном чертеже Развертывающиеся поверхности Многогранные поверхности Многогранники - геометрические тела, поверхность которых состоит из отсеков плоскостей, ограниченных многоугольниками.

    Комплексный чертеж призматической поверхности

    Задание кривых линейчатых поверхностей

    Задание цилиндрической поверхности общего вида на комплексном чертеже Цилиндрическая поверхность образуется перемещением прямолинейной образующей (l) по кривой направляющей (m), в каждый момент движения оставаясь параллельной заданному направлению (s).

    Задать проекции элементов определителя

    Алгоритм построения цилиндроида Для построения образующих (если поверхность уже сконструирована) проводят ряд плоскостей, параллельных плоскости параллелизма, и определяют точки их пересечения с направляющими (m, n)

    Поверхности вращения второго порядка Цилиндр вращения образуется вращением образующей- l(прямой линией) вокруг параллельной ей оси.

    Эллипсоид сжатый

    Эллипсоид вращения Образуется вращением эллипса вокруг оси

    Винтовые поверхности Как Вы думаете, какое свойство винтовых поверхностей обеспечивает им широкое применение в технике: винты, шнеки, сверла, пружины? Оказывается эти поверхности могут сдвигаться, т.е. совершая винтовое перемещение, поверхность скользит вдоль самой себя.

    Позиционные задачи В данном модуле вы научитесь находить общий элемент пересекающихся геометрических фигур в пространстве, овладеете алгоритмом построения проекций элементов пересечения геометрических фигур, занимающих различное положение относительно плоскостей проекций. В технике детали большинства изделий имеют формы, представляющие собой поверхности, пересечённые либо плоскостями, либо другими поверхностями. Для того, чтобы проектировать и изготавливать такие изделия, необходимо научиться строить линии пересечения различных геометрических фигур. В этом вам поможет данный раздел начертательной геометрии.

    Решение главных позиционных задач. 3 случая. 3 алгоритма. Способ решения главных позиционных задач, или алгоритм решения, зависит от расположения пересекающихся геометрических фигур относительно плоскостей проекций.

    Решение задач в случае, когда одна из пересекающихся фигур проецирующая, вторая - непроецирующая.

    Конические сечения Решение второй главной позиционной задачи по 2 алгоритму рассмотрим на примере конических сечений. Ещё в Древней Греции был известен тот факт, что при пересечении конуса различными плоскостями можно получить прямые линии, кривые второго порядка и, как вырожденный случай, точку

    Задача: Построить линию пересечения сферы S и горизонтально проецирующей призмы Г

    Решение задач в случае, когда обе пересекающиеся фигуры - непроецирующие. В данном случае задача усложняется тем, что на чертеже нет главной проекции ни у одной из пересекающихся фигур. Поэтому для решения таких задач специально вводят вспомогательную секущую поверхность-посредник, которая пересекает обе фигуры, выявляя общие точки. Эта поверхность-посредник может быть проецирующей, и тогда решение задачи можно свести ко 2 алгоритму, или непроецирующей (например, сфера - посредник). Решение первой и второй ГПЗ рассмотрим отдельно.

    Задача: Найти точки пересечения пирамиды Г(SABC) с прямой а

    Частные случаи пересечения поверхностей вращения второго порядка Пересечение соосных поверхностей вращения.

    Метрические задачи. Преобразование комплексного чертежа Модуль предполагает знакомство с задачами, связанными с различными измерениями: натуральных величин отрезков, углов, плоских фигур; расстояний между фигурами и т.д. Вы узнаете, как проще решать метрические и позиционные задачи, используя способы преобразования комплексного чертежа. Кроме того, используя знания, полученные в модулях 1-3, Вы научитесь решать сложные инженерные конструктивные задачи.

    Обратная задача. Чтобы задать на чертеже плоскость, перпендикулярную данной прямой n, достаточно задать проекции горизонтали и фронтали этой плоскости так, чтобы f2 ^ n2, a h1 ^ n1.

    Взаимная перпендикулярность двух плоскостей общего положения Известно, что две плоскости взаимно перпендикулярны, если в одной из них лежит прямая, перпендикулярная другой плоскости. Таким образом, построение взаимно перпендикулярных плоскостей общего положения сводится к построению взаимно перпендикулярных прямой и плоскости.

    Задачи на определение расстояний между геометрическими фигурами К таким задачам относятся: задачи на определение расстояний от точки до прямой, до плоскости, до поверхности; между параллельными и скрещивающимися прямыми; между параллельными плоскостями и т. п.

    Преобразование комплексного чертежа Решение многих пространственных задач на комплексном чертеже часто бывает слишком сложным из-за того, что заданные геометрические фигуры расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искажённом виде.

    Первая основная задача преобразования комплексного чертежа Преобразовать комплексный чертёж так, чтобы прямая общего положения в новой системе плоскостей проекций стала бы прямой уровня

    Третья основная задача преобразования комплексного чертежа Преобразовать комплексный чертёж так, чтобы плоскость общего положения стала бы проецирующей

    Способ вращения вокруг проецирующей оси В этом разделе Вы узнаете, каким образом преобразовать комплексный чертеж, не меняя положение плоскостей проекций, чтобы соответствующая фигура в конкретной задаче заняла бы частное положение. Если заданные фигуры занимают общее, случайное, часто неудобное с точки зрения поставленной задачи положение относительно плоскостей проекций, следует привести их в удобное положение. Очевидно, для этого нужно посмотреть на объект с другой точки зрения (ввести новую плоскость проекций), как было показано выше, или повернуть объект.

    Примеры применения способа вращения точки вокруг проецирующей оси

    Задача Прямую общего положения СD поставить в положение проецирующей прямой.

    Плоскость общего положения поставить в положение проецирующей

    Решение метрических задач с помощью преобразования комплексного чертежа Преобразование комплексного чертежа часто используется при решении метрических задач. В этом случае конечной целью преобразования чертежа является получение такой проекции оригинала, на которой можно было бы видеть в натуральную величину геометрический элемент, связанный с искомой метрической характеристикой.

    Задача: Построить проекции равностороннего треугольника АВС, принадлежащего плоскости Г

    Решение позиционных задач с помощью преобразования комплексного чертежа Многие позиционные задачи, главным образом, задачи на пересечение поверхностей с прямыми или плоскостями общего положения, удобно решать с помощью преобразования комплексного чертежа. В этом случае конечной целью преобразования является получение такой проекции оригинала, при которой участвующие в пересечении прямая или плоскость находятся в частном положении. Тогда в новом положении решение задачи значительно упрощается. При необходимости проекции общего элемента возвращают в исходный чертёж в обратном порядке.

    Изображения на технических чертежах. Изображения на чертежах в зависимости от содержания разделяют на виды, разрезы, сечения в соответствии с ГОСТ 2.305-68*. Изображения предметов на чертежах получают способом прямоугольного проецирования.

    Разрезы. Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями. На разрезе показывается то, что лежит в секущей плоскости и что расположено за ней. При этом часть предмета, расположенную между наблюдателем и секущей плоскостью, мысленно удаляют, в результате чего все закрытые этой частью поверхности становятся видимыми.

    Местные разрезы Местным разрезом называется разрез, служащий для выяснения внутреннего устройства предмета лишь в отдельном ограниченном месте. В машиностроении при вычерчивании сплошных (непустотелых) предметов полные разрезы не применяют. Однако часто в сплошных деталях имеются местные углубления или отверстия, форму которых нужно показать.

    Сечения Сечением называется изображение фигуры, получающейся при мысленном рассечении предмета одной плоскостью . На сечении показывается только то, что лежит в секущей плоскости. Построение сечений.

    Выносные элементы. Выносной элемент - дополнительное отдельное увеличенное изображение какой-либо части предмета, требующей пояснений в отношении формы и размеров, а поэтому обычно выполняется в масштабе увеличения. При применении выносного элемента соответствующее место отмечают на виде, разрезе или сечении замкнутой сплошной тонкой линией- окружностью, овалом и т.п. с обозначением прописной буквой русского алфавита или буквенно-цифровым.

    Рассмотрим примеры выполнения заданий. Задача1. По наглядному изображению построить три вида детали и выполнить необходимые разрезы.

    Сведения о поверхностях. Построение линий, принадлежащих поверхностям. Для того, чтобы построить линии пересечения поверхностей, нужно уметь строить не только поверхности, но и точки, расположенные на них. В этом разделе рассматриваются наиболее часто встречающиеся поверхности.

    Сфера. Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.

    Рекомендации по выбору аксонометрических проекций Из ГОСТ2.317-70 и различных видов аксонометрических проекций рассмотрим ортогональные изометрию и диметрию, а также косоугольную диметрию, как наиболее часто применяющиеся. Прямоугольная изометрия В изометрии все оси наклонены к аксонометрической плоскости под одним и тем же углом, следовательно угол между осями (120° ) и коэффициент искажения будет одинаков.

    Этапы выполнения наглядного изображения детали. Деталь вписывается в поверхность четырехугольной призмы, размеры которой равны габаритным размерам детали. Эта поверхность называется обертывающей. Выполняется изометрическое изображение этой поверхности. Обертывающая поверхность строится по габаритным размерам

    Построение окружностей в прямоугольной диметрии. Окружности, лежащие на плоскостях координат в прямоугольной диметрии, также как и в изометрии, будут изображаться в виде эллипсов

    Курс лекций Сопротивление материалов