Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Курсовые и лабораторные по по сопромату

Влияние на выносливость детали концентраторов напряжений. Влияние взаимного расположения нескольких концентраторов. Эффективный коэффициент концентрации напряжений и от каких факторов зависит его величина. Конструктивные меры с целью повышения долговечности деталей с концентраторами напряжений. Влияние размеров детали на ее усталостную прочность. Масштабный коэффициент. Влияние состояния поверхности детали на ее усталостную прочность. Причина этого влияния.

Монтаж подшипников качения

Основные правила при монтаже подшипников следующие. При запрессовке подшипника сила должна передаваться непосредственно на то кольцо, которое устанавливается с натягом. Если оба кольца установлены с натягом, то сила должна передаваться непосредственно и одновременно обоим кольцам. Недопустимо, чтобы сила передавалась от одного кольца к другому или от сепаратора к кольцу через тела качения. Нельзя допускать ударов непосредственно по кольцам, телам качения и сепаратору.

Монтаж в холодном состоянии. Малые подшипники с диаметром отверстия менее 80 мм можно устанавливать посредством молотка и втулки, соприкасающейся с запрессовываемым кольцом.

Малые подшипники с диаметром отверстия до 100 мм целесообразнее монтировать с помощью механического или гидравлического пресса. Сила, создаваемая прессом, должна передаваться к монтируемому с натягом кольцу через втулку.

В холодном состоянии могут монтироваться цилиндрические разъемные роликоподшипники всех размеров.

Монтаж с нагревом. С увеличением размера подшипника возрастает и сила, требуемая для запрессовки. Монтажные работы по установке подшипников на вал существенно облегчаются при их нагреве. Разность температур между подшипником и сопряженной с ним деталью зависит от посадки подшипника. Обычно подшипник, подлежащий насадке на вал, нагревают до температуры на 80...90 °С выше температуры вала. Следует иметь в виду, что нельзя нагревать подшипник до температуры, превышающей 125 °С, поскольку это может вызвать изменения в структуре металла, а также оказать влияние на размеры и твердость.

Если требуется монтировать подшипники с натягом в отверстие корпуса, то, ввиду малости натяга, бывает достаточно нагреть корпус на 20...50 °С выше. В том случае, если нагрев корпуса затруднен или невозможен из-за больших размеров, производят монтаж в отверстие корпуса предварительно охлажденных подшипников. Охлаждение производят до температуры -70...75 °С в термостате с сухим льдом.

Для нагрева подшипников может использоваться следующее оборудование. Подшипники можно нагревать в баке с маслом. Масляная ванна обеспечивает равномерный нагрев и сохраняет подшипник нагретым до самого монтажа. Нагревательный шкаф, оборудованный термостатом и вентилятором, может быть использован для нагрева нескольких подшипников разных размеров, а также небольших корпусов подшипников. Строим эпюры внутренних усилий – N, Q, M. Предварительно выпишем полученные значения внутренних усилий по участкам. В первой графе таблице идут номера точек ограничивающих участок. Значения нормальных сил приведены на весь участок. Для поперечных сил и изгибающих моментов приведены их значения вначале и в конце участка – начало участка соответствует первой точке номера участка, конец – второй.

Для монтажа внутренних колец цилиндрических роликоподшипников удобно пользоваться нагревательными кольцами из алюминиевого сплава.

Если монтаж подшипников приходится осуществлять часто, для их нагрева следует применять индукционные нагреватели.

Демонтаж подшипников качения

Существует множество способов демонтажа подшипников качения. Основные способы следующие.

Подшипники малых и средних размеров обычно демонтируются с помощью механических инструментов. Для демонтажа удобно использовать пресс. При этом упор ставят на кольцо подшипника, установленное с натягом. Для демонтажа также используются различные съемники.

Съемник должен хорошо центрироваться. В противном случае место посадки может быть повреждено. В том случае, когда нет возможности произвести стягивание за внутреннее кольцо, установленное на валу с натягом, допускается стягивать и за наружное кольцо. Однако при этом можно повредить подшипник, так как сила будет передаваться через тела качения. Если этот подшипник предполагается использовать повторно, то в процессе стягивания за наружное кольцо подшипник следует поворачивать.

Если подшипник извлекается съемником из корпуса, где он был установлен с натягом, то его также в процессе стягивания следует поворачивать.

Следует отметить, что удобство демонтажа следует обеспечить еще на стадии проектирования подшипникового узла. На валу должны быть изготовлены пазы для захватов съемника, а в корпусе – резьбовые отверстия или пазы для съемника.

Для демонтажа подшипников средних размеров, как правило, необходимы значительные усилия. Поэтому вместо механических инструментов преимущественно используют гидравлические. При демонтаже средних и крупных подшипников целесообразно применять метод подачи масла под давлением между шейкой вала и отверстием подшипника.

Демонтаж внутренних безбортовых колец роликоподшипников удобно производить, применяя нагрев.

Обслуживание подшипников качения

Долговечность подшипников в подавляющем большинстве механизмов существенно зависит от качества обслуживания. Приемы обслуживания в механизмах, внеплановые остановки которых не приводят к тяжелым последствиям, обычно не сложны.

В процессе работы регулярно контролируется температура подшипника.

Повышенная температура подшипникового узла указывает на ненормальную работу подшипника. Кроме того, нагрев может отрицательно повлиять на смазочный материал.

Причиной повышения температуры может служить как недостаточное, так и избыточное смазывание, повышенные нагрузки, загрязнение смазочного материала, слишком малый зазор в подшипнике, чрезмерный натяг, а также сильное трение в уплотнениях.

Периодичное смазывание проводят согласно руководству по обслуживанию или в соответствии с рекомендациями.

Другим показателем состояния работы подшипника является уровень вибрации и частотные характеристики производимого подшипником шума. С помощью портативных виброметров можно надежно диагностировать состояние вращающихся подшипников качения. Технология основана на способе измерения вибраций в ультразвуковом диапазоне. Приборы, реализующие такую технологию, указывают на такие дефекты, как недостаточное либо неправильное смазывание, перегрузку или возникновение повреждений дорожек и тел качения.

В тех случаях, когда выход подшипников приводит к тяжелым последствиям, следует устанавливать непрерывно работающие диагностические приборы с соответствующим программным обеспечением для быстрой и точной диагностики и оценки результатов, а также автоматической остановкой механизма.

Бесшарнирные арки

Бесшарнирная арка – трижды статически неопределима (рис. 3, а). Рассмотрим расчет симметричной арки. За основную систему можно принять любую из показанных на рис. 3, б, в, г. Как будет установлено в дальнейшем, основная система, изображенная на рис. 3, г, является лучшей. В этой системе используется невесомые и абсолютно жесткие консоли длиной с. Так как из условия равновесия Х1 = Н, то неизвестное Х1 называют распором.


Система канонических уравнений метода сил примет вид:

 (15)

 Моменты  и  в произвольном сечении арки можно представить в виде:

(рис. 3, д, е).

Подберем длину консоли с так, чтобы δ12 было равно нулю, то есть

где s – вся дина арки. Принимая во внимание симметрию арки, запишем

 откуда определяем длину жесткой консоли:

  (16)

Таким образом, принимая длину жесткой консоли с по формуле (16), мы будем получать δ12 = δ21 =0 и тогда система уравнений (15) еще более упростится и примет вид:

 (17)

Влиянием  и NF, QF пренебрегаем. Тогда

  (18)

  (19)

Подставляя выражения (18), (19), определяемые точным или приближенным интегрированием, в канонические уравнения (17), находим лишние неизвестные Х1, Х2 и Х3. Затем переходим к вычислению усилий в произвольном сечении арки и построению соответствующих эпюр.

Отличие предела выносливости детали от предела выносливости материала. Формула для определения предела выносливости детали. Влияние на предел выносливости коэффициента асимметрии цикла. Изображение циклов в координатах ( , ). Построение диаграммы предельных циклов по данным эксперимента и какой вид она имеет. Как провести границу предельных циклов по пластическим деформациям. Условие, определяющее эту границу. Вид приближенной диаграммы предельных циклов. По каким данным она строится. Как определить координаты расчетного цикла для детали.

Инженерная графика

 

Начертательная геометрия
Теория цепей
Сопромат
Лабораторные работы
Электротехника
Математика