Курсовые и лабораторные по по сопромату

Атомные станции России
Смоленская АЭС
Курская АЭС
Калининская АЭС
Кольская АЭС
Ростовская АЭС
Нововоронежская АЭС
Ленинградская АЭС
Билибинская АЭС
Белоярская АЭС
Балаковская АЭС
Безопасность АЭС
Экология
Модернизация АЭС
Перспективы
Соцкультбыт
Типы атомных станций
  • с реакторами РБМК 1000
  • с реакторами ВВЭР
  • с реакторами БН-600
  • Атомная энергетика
    Первая в мире атомная электростанция
    Юбилей Атомной энергетики
    Российские атомные ледоколы
    Ядерные реакторы
     
  • Ядерные топливные циклы
  • Безопасность АЭС
  • История атомной энергетики
  • Канальный кипящий графитовый реактор
  • Реакторы водо-водяного типа
  • Реакторы на быстрых нейтронах
  • Сравнение различных типов энергетических
    ядерных реакторов
  • Реакторы третьего поколения ВВЭР-1500
  • Безопасный быстрый реактор РБЕЦ
  • Энергетическая установка ГТ-МГР
  • ВАО АЭС
  • Импульсные реакторы 
  • Реактор БИГР (быстрый
    импульсный графитовый реактор)
  • Атомные батареи в космосе
  • Излучатели нейтронов
  • Изотопные источники электронов
  • Первый бетатрон для ускорения
    электронов
  • Альтернативная энергетика
    Курсовые проекты по ядерным реакторам
    Испытания ядерного оружия
     
  • Ядерные испытания том 1
  • Ядерные испытания том 2
  • Ядерное разоружение
  • Ядерное оружие
  • Ядерные испытания в Артике
     
  • Арктический ядерный полигон
  • Создание полигона
  • Подводные ядерные взрывы
  • Испытание оперативно-тактической
    ракеты
  • Аварии на ядерных реакторах
     
  • Чернобыльская катастрофа
  • Чернобыльская АЭС
  • Космические ядерные аварии
  • Курс Атомная энергетика
    Книга Укращение ядра
    Теплоэнергетика
    Малая теплоэнергетика
    Машиностроительное черчение
    и инженерная графика
    Приемы выполнения графических работ
    Инженерная графика
    Разъемные и неразъемные соединения
    Виды соединения деталей
    Работа в AutoCAD при выполнении чертежа
    Инженерная графика
    Аксонометрическая проекция
    Техническое черчение
    Компас-3d
    Лабораторные работы
    и задачи по электротехнике
    Трехфазные цепи
    Методы расчета электрической цепи
    Соединение нагрузки треугольником
    Преимущества трезфазных систем
    Расчет симметричных режимов работы
    трехфазных систем
    Расчет разветвленных однофазных цепей
    Расчет разветвленной магнитной цепи
    Математика
    Математика решение задач
    Линейная алгебра
    Дифференциальное исчисление
    Дифференциальные уравнения
    Теория вероятностей
    Математический анализ
    Геометрический смысл производной
    Числовые ряды
    функции комплексного переменного
    Вычислить интеграл Задачи и примеры
    Поверхностные и кратные интегралы
    Физические задачи

    Билеты к экзамену по высшей математике

    Компьютерная математика Mathematica
    Maple
    Матричная лаборатория MATLAB
    Физика
  • Электротехника
  • Кинематика, динамика, термодинамика
  • Электростатика, Магнетизм
  • Волновая и квантовая оптика
  • Физика в конспективном изложении
  • Законы геометрической оптики
  • Механизм ядерных реакций
  • Электромагнитные колебания
  • Ядерная физика
  • Строение и общие свойства атомных ядер
  • Модели атомных ядер
  • Радиоактивные превращения ядер
  • Ядерные реакции
  • Деление ядер
  • Курс Физика ядра и частиц
  • Сопротивление материалов
    Лабораторные работы по сопромату
  • Исследовать рабочую систему
    механизма редуктора
  • Лабораторные работы по сопромату
  • Содержание и задачи курса
    сопротивление материалов
  • Техническая механика
  • Балочные системы
  • Чертежи
  • Основные типы подшипников качения
  • Дизайн
     
  • Дизайн в промышленности
  • Западный и российский дизайн
  • История дизайна
  • Эргономика
  • Архитектура и проектирование
    промышленных изделий
  •  
    История искусства
    Техника иконописания
    Сюжеты древнерусской живописи
    Баухауз
    Информатика
    Информатика
    Турбо Паскаль
    Visual Studio
    Visual Foxpro
    Visual Basic
    CorelDRAW

    Новая технология .NET

     

    Расчет трехопорной рамы Изучение сопротивления материалов требует решения конкретных задач, что позволяет глубже понять теоретические основы дисциплины. В настоящей работе рассмотрены типовые задачи по следующим разделам курса сопротивления материалов

    Статически неопределимый стержень кусочно-постоянного сечения Рассмотрим стержень кусочно-постоянного сечения, закрепленный с двух концов, под действием продольных сосредоточенных сил Fk и собственного веса 

    Для определения внутренних усилий и перемещений в стержне его разбивают на участки. Границами участков являются сечения стержня, где приложены сосредоточенные внешние силы или меняется площадь поперечного сечения стержня. Рассматриваемый стержень состоит из четырех участков. Пронумеруем граничные сечения стержня, присвоив точке  В нулевой номер. В этом случае номера участка будет совпадать с номером верхнего сечения участка стержня. Очевидно, в основной системе перемещение верхнего сечения стержня в точке А равно нулю, так как он закреплен.

    Для построения эпюры нормальных напряжений вдоль оси стержня, определим значения напряжения в опорных сечениях

    Расчет систем стержней, соединенных с недеформируемым элементом

    (Е = 2.0×105 МПа, n = 0.25, sТ = 200 МПа) в наклонном сечении (a = 30°) действует нормальное напряжение sa = 100 МПа. Определить действующие в стержне максимальные нормальные и касательные напряжения и оценить его прочность.

    Расчет стержневой системы по предельному состоянию Расчет по предельному состоянию позволяет определить несущую способность конструкцию, т.е. предельную нагрузку, при которой конструкция теряет свою работоспособность. Потеря конструкцией работоспособности происходит по причине разрушения или потери конструкции или отдельных ее элементов, либо по причине возникновения в конструкции больших деформаций и превращения конструкции в механизм. Именно по последней причине происходит выход из рабочего состояния конструкций, состоящих из пластичных материалов.

    Винтовыми зубчатыми колесами называются обычные цилиндрические зубчатые колеса с косыми зубьями (в частности, одно из зубчатых колес может быть прямозубым) в том случае, когда передача движения осуществляется между двумя валами, оси которых скрещиваются (т. е. не параллельны и не пересекаются). Угол скрещивания осей валов может быть выполнен любым в пределах от 0 до 90°.

    Геометрические характеристики сечений При изучении напряженно деформированного состояния центрально- растянутых стержней использовалась единственная геометрическая характеристика – площадь поперечного сечения A. Изучение напряженно-деформированного состояния стержней, работающих на изгиб, кручение и другие виды сопротивления, выявляет новые интегральные характеристики сечений. Для определения напряжений и деформаций стержней необходимо знать численные значения этих геометрических характеристик. Следовательно, необходимо уметь определять эти характеристики, знать их свойства.

    Определяют геометрические характеристики сечения – осевые, полярный и центробежный моменты инерции сечения относительно центральных осей

    Круг Мора моментов инерции сечений Кроме аналитического метода определения положения главных осей и вычисления главных моментов инерции по формулам можно использовать графический метод – построение круга Мора моментов инерции сечения. Графический метод может использоваться как независимо, так и для контроля правильности аналитических расчетов. При аккуратном построении круга Мора графический метод позволяет определить положение главных осей и значения главных моментов инерции с точностью 3-х – 5-ти процентов

    Геометрические характеристики прокатных профилей Для сечений, составленных из прокатных профилей (двутавры, швеллера, уголки) геометрические характеристики определяются в соответствии с ГОСТ (государственный общероссийский стандарт). В таблицах прокатных профилей приводятся все размеры, согласно которым изготовляются прокатные профили, а так же значение геометрических характеристик - осевых моментов инерции, моментов сопротивления, радиусов инерции, координаты центра тяжести сечения, а также значение , определяющего положение главных осей несимметричных сечений (неравнобокий уголок).

    Определяем координаты центров тяжести элементов сечения относительно центральных осей

    Расчет трехопорных рам Рамы представляют собой геометрически неизменяемую систему, состоящую из стержней, расположенных в плоскости (плоские рамы) или в пространстве, жестко или шарнирно соединенных между собой. Сложные рамные системы, в том числе статически неопределимые, изучаются в курсе строительной механики стержневых систем. В данной работе рассматриваются простейшие плоские статически определимые рамы, состоящие из жестко соединенных прямых стержней. Конструкция рамы не имеет замкнутых контуров и имеет три опорных стержня.

    Характерные особенности эпюр внутренних усилий в рамах и контроль за правильностью их построения. Нормальные силы на участках рамы, при отсутствии продольных распределенных нагрузок, постоянны. Для контроля за правильностью вычисления и построению эпюр поперечных сил и изгибающих моментов используют дифференциальные соотношения Журавского

    Порядок расчета рамы Определяются опорные реакции. Простые статически определимые рамы, состоящие из жестко соединенных стержней, имеют три опорных стержня, не пересекающихся в одной точке – трехопорная рама, или одну опору с жестким защемлением - консольная рама. В трехопорной раме опорные реакции действуют вдоль опорных стержней. В консольной раме в защемлении действуют две взаимно перпендикулярные реакции и опорный момент. Направление опорных реакций (вправо, влево от сечения опорного стержня) и опорного момента выбирается произвольно. 

    Пример расчета трехопорной рамы

    Вычисляем  значения внутренних усилий – нормальных N и поперечных Q сил и изгибающих моментов М. Для определения внутренних сил проводим сечение, которое всегда разбивает простую раму на две части, вычерчиваем одну из частей (ту, при рассмотрении которой проще определить внутренние усилия), указываем на чертеже положительные направления внутренних усилий и определяем внутренние усилия из уравнений равновесия отсеченной части рамы.

    Строим эпюры внутренних усилий – N, Q, M. Предварительно выпишем полученные значения внутренних усилий по участкам. В первой графе таблице идут номера точек ограничивающих участок. Значения нормальных сил приведены на весь участок. Для поперечных сил и изгибающих моментов приведены их значения вначале и в конце участка – начало участка соответствует первой точке номера участка, конец – второй.

    Задания на выполнение курсовых работ по сопротивлению материалов Курсовая работа Расчет статически неопределимого стержня на растяжение-сжатие

    Исследовать рабочую систему механизма редуктора

    Характеристика технической системы Назначение редуктора: Редуктор предназначен для передачи и изменения крутящего момента и частоты вращения рабочих органов

    Составляем простую модель технической системы

    Модель системы технического процесса

    Зубчатые механизмы Возможности по преобразованию вида движения, изменению скорости, достоинства, недостатки зубчатых механизмов. Зубчатая передача – это механизм или часть механизма, в состав которого входят зубчатые колёса.

    Достоинства косозубых передач: Зацепление происходит более плавно и равномерно, чем у прямозубых; меньший шум при зацеплении. Недостатки косозубых передач: При работе косозубого колеса возникает механический момент, направленный вдоль оси, что вызывает необходимость применения для установки вала упорных подшипников;

    Геометрические параметры цилиндрических прямозубых колес и передач. Передаточное отношение (число) зубчатых передач. Рассмотрим элементы зубчатых колес, находящихся в зацеплении, в плоскости, перпендикулярной к оси вращения. По высоте снаружи зубья ограничены окружностью выступов диаметром da, изнутри – окружностью впадин диаметром df. Боковые поверхности полного профиля зуба очерчены эвольвентами противоположных ветвей. При зацеплении одного колеса с другим появляется начальная окружность радиусом rw. Это окружность одного зубчатого колеса, перекатывающаяся без скольжения по окружности (поверхности) второго из зацепляющихся колес.

    Применение зубчатых передач в приборостроении. Косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высокой скорости, либо имеющих жёсткие ограничения по шумности. Зубчатые передачи определяют качество, надежность, работоспособность и долговечность машин, станков, приборов и других изделий. Основным геометрическим параметром, определяющим все элементы передачи, является модуль m. Мелкомодульные передачи (m < 1) применяются при малых нагрузках (в приборостроении, при ручном приводе).

    Дисциплина «Техническая механика» является обще профессиональной, обеспечивающей базовые знания при усвоении специальных дисциплин, изучаемых в дальнейшем. Задачи теоретической механики

    Связи и реакции связей Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные.

    Подвижный шарнир Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей (площадки)

    Плоская система сходящихся сил. Определение равнодействующей геометрическим способом Знать геометрический способ определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

    Определение равнодействующей системы сил аналитическим способом Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геометрическим способом. Выберем систему координат, определим проекции всех заданных векторов на эти оси

    Пара сил и момент силы относительно точки Знать обозначение, модуль и определение моментов пары сил и силы относительно точки, условия равновесия системы пар сил. Уметь определять моменты пар сил и момент силы относительно точки, определять момент результирующей пары сил.

    Плоская система произвольно расположенных сил Иметь представление о главном векторе, главном моменте, равнодействующей плоской системы произвольно расположенных сил. Знать теорему Пуансо о приведении силы к точке, приведение произвольной плоской системы сил к точке, три формы уравнений равновесия.

    Балочные системы. Определение реакций опор и моментов защемления Иметь представление о видах опор и возникающих реакциях в опорах.

    Пространственная система сил Знать момент силы относительно оси, свойства момента, аналитический способ определения равнодействующей, условия равновесия пространственной системы сил. Уметь выполнять разложение силы на три взаимно перпендикулярные оси, определять момент силы относительно оси.

    Основные понятия кинематики. Кинематика точки Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении. Знать способы задания движения точки (естественный и координатный).

    Простейшие движения твердого тела Иметь представление о поступательном движении, его особенностях и параметрах, о вращательном движении тела и его параметрах. Знать формулы для определения параметров поступательного ш вращательного движений тела.

    Понятие о трении. Виды трения Трение — сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел возникает трение скольжения, при качении — трение качения. Природа сопротивлений движению в разных случаях различна.

    Работа и мощность Иметь представление о работе силы при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия. Знать зависимости для определения силы трения, формулы для расчета работы и moi юности при поступательном и вращательном движениях.

    Сопротивление материалов Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях.

    Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр Иметь представление о продольных силах, о нормальных напряжениях в поперечных сечениях.

    Примеры решения задач Ступенчатый брус нагружен вдоль оси двумя силами. Брус защемлен с левой стороны. Пренебрегая весом бруса, построить эпюры продольных сил и нормальных напряжений.

    Механические испытания, механические характеристики. Предельные и допускаемые напряжения Иметь представление о предельных и допускаемых напряжениях и коэффициенте запаса прочности.

    Прямой брус растянут силой 150 кН, материал — сталь σт = 570 МПа, σв = 720 МПа, запас прочности [s] = 1,5. Определить размеры поперечного сечения бруса.

    Геометрические характеристики плоских сечений Иметь представление о физическом смысле и порядке определения осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции. Знать формулы моментов инерции простейших сечений, способы вычисления моментов инерции при параллельном переносе осей.

    Деформации при кручении Кручение круглого бруса происходит при нагружении его парами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ называемый углом сдвига (угол поворота образующей Поперечные сечения разворачиваются на угол ip, называемый углом закручивания

    Кручение. Напряжения и деформации при кручении Иметь представление о напряжении и деформациях при кручении, о моменте сопротивления при кручении. Знать формулы для расчета напряжений в точке поперечного сечения, закон Гука при кручении.

    Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе Иметь представление о видах изгиба и внутренних силовых факторах. Знать методы для определения внутренних силовых факторов и уметь ими пользоваться для определения внутренних силовых факторов при прямом изгибе.

    Нормальные напряжения при изгибе. Расчеты на прочность Знать распределение нормальных напряжений по сечению балки при чистом изгибе, расчетные формулы и условия прочности. Уметь выполнять проектировочные и проверочные расчеты на прочность, выбирать рациональные формы поперечных сечений.

    Расчет бруса круглого поперечного сечения при сочетании основных деформаций Знать формулы для эквивалентных напряжений по гипотезам наибольших касательных напряжений и энергии формоизменения. Уметь рассчитывать брус круглого поперечного сечения на прочность при сочетании основных деформаций.

    Сопротивление усталости Иметь представление об усталости материалов, о кривой усталости и пределе выносливости. Знать характер усталостных разрушений, факторы, влияющие на сопротивление усталости, основы расчета на прочность при переменном напряжение.

    Испытание на растяжение образца из низкоуглеродистой стали

    Диаграмма растяжения В процессе испытания ведется наблюдение за поведением образца, за диаграммой на мониторе компьютера, и за показаниями стрелки силоизмерителя машины.

    Диаграмма условных напряжений. Механические характеристики материалов. Координаты диаграммы растяжения не являются качественными характеристиками материала, т. к. растягивающая образец сила F зависит от площади сечения, а удлинение образца Δl – от его длины.

    Получить диаграмму растяжения и исследовать процесс растяжения образца из малоуглеродистой стали вплоть до его разрушения Экспериментально подтвердить справедливость закона Гука при растяжении и определить значение модуля упругости Е.

    Общие сведения о подшибниках качения Назначение подшипников качения, их достоинства и недостатки. Материалы подшипников качения Опоры валов и осей, в которых трение скольжения заменено трением качения, называют подшипниками качения.

    Классификация подшипников качения

    Основные типы подшипников качения Радиальные однорядные шарикоподшипники получили наибольшее распространение в машиностроении. При одинаковых размерах с другими подшипниками имеют наименьшие потери на трение и допускают наибольшую частоту вращения. Такие подшипники могут воспринимать не только радиальные, но и осевые нагрузки, действующие в обоих направлениях вдоль оси вала и не превышающие 70 % использованной допустимой радиальной нагрузки. Для восприятия чисто осевой нагрузки применяют шарикоподшипники с увеличенными радиальными зазорами между шариками и дорожкой качения.

    Основные виды разрушения и критерии работоспособности подшипников качения Основные виды разрушения деталей подшипников качения: - усталостное разрушение (выкрашивание) рабочих поверхностей тел качения и беговых дорожек колец вследствие циклического контактного нагружения; этот основной вид разрушения подшипников наблюдается после длительной работы и сопровождается повышением шума и вибрации; из опыта эксплуатации установлено, что чаще повреждается беговая дорожка внутреннего кольца

    Монтаж подшипников качения Основные правила при монтаже подшипников следующие. При запрессовке подшипника сила должна передаваться непосредственно на то кольцо, которое устанавливается с натягом. Если оба кольца установлены с натягом, то сила должна передаваться непосредственно и одновременно обоим кольцам. Недопустимо, чтобы сила передавалась от одного кольца к другому или от сепаратора к кольцу через тела качения. Нельзя допускать ударов непосредственно по кольцам, телам качения и сепаратору.

    Методы проведения лабораторной работы При выполнении лабораторной работы студенту предоставляется возможность изучить конструкции и характеристики основных видов подшипников качения по натурным образцам, представленным на стенде и в учебно-методическом пособии, ознакомиться с их классификацией и условными обозначениями.

    Экспериментальное исследование характеристик подшипников По полученным результатам построить тарировочные графики (предпочтительнее на миллиметровой бумаге). В результате выполнения лабораторной работы должно быть выявлено влияние угловой скорости подвижного кольца подшипника, величины, направления и соотношения осевой и радиальной составляющих приложенной нагрузки на величину момента сопротивления вращению в подшипнике качения.

    Равноускоренное движение Целью работы является изучение законов равноускоренного движения при помощи машины Атвуда.

    Метод наименьших квадратов Пусть в результате эксперимента мы получили ряд измерений величины : , соответствующих значениям аргумента , , …, , которые могут быть представлены на графике в виде точек. Нам необходимо установить эмпирическую зависимость между  и .

    Лабораторная работа Изучение законы движения центра масс механической системы Целью работы является ознакомление с понятием центра масс системы материальных точек и с его важнейшими свойствами. Содержание работы состоит в определении перемещения и ускорения центра масс незамкнутой системы из двух материальных точек при помощи машины Атвуда.

    Определение коэффициента трения качения Целью работы является изучение явления возникновения трения при качении одного тела по поверхности другого.

    Основы конструирования (в технико-экономическом понимании) – область научно-технического знания (учебный предмет, дисциплина, курс) об общих принципах и методах конструирования машин на основе (путем, посредством) их унификации и стандартизации, а также повышения их рентабельности, долговечности, надежности и экономической эффективности

    Транспортные машины – рабочие машины, изменяющие положение материала (перемещаемого предмета). Например: всевозможные транспортеры, конвейеры, лифты, подъемники, шнеки-дозаторы,  автотранспортные средства и т.п.

    Изучение конструкции цилиндрического двухступенчатого редуктора Редуктором называется механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного закрытого агрегата и служащий для передачи мощности от двигателя к рабочей машине. Назначение редуктора – понижение угловой скорости и, соответственно, повышение вращающего момента ведомого вала по сравнению с ведущим. Преимущества зубчатых передач: постоянное передаточное отношение (отсутствие проскальзывания); высокий КПД (в отдельных случаях до 0,99); надежность, простота эксплуатации; неограниченный диапазон передаваемых мощностей (от сотых долей до десятков тысяч киловатт). Высокая нагрузочная способность обеспечивает малые габариты зубчатых передач.

    Разборка редуктора и ознакомление с конструкцией и назначением отдельных узлов Разборка одного из редукторов, указанных преподавателем, производится в следующем порядке: развинчивают болты крепления корпуса, поднимают крышку, используя отжимной болт. Поскольку крышка редуктора является тяжелой деталью, редуктор может перед началом работы находиться в разобранном виде, что дает возможность сразу приступить к знакомству с конструкцией и назначением деталей и узлов редуктора (валов, крышек, регулировочных колец, щупа масломера, сливной пробки).

    Исследование характеристик ременной передачи Ременная передача относится к передачам трением с гибкой связью. Передача состоит из ведущего 1 и ведомого шкивов 2, огибаемых ремнем 3, натяжного устройства 4. Нагрузка передается силами трения, возникающими между шкивом и ремнем вследствие натяжения последнего. В зависимости от формы  поперечного сечения ремня передачи бывают плоскоременные, круглоременные, клиновые, поликлиновые.

    Скольжение ремня. Тяговая способность ременных передач При передаче движения ремнем наблюдается проскальзывание ремня по поверхности шкива. Проскальзывание увеличивается с ростом нагрузки. В пределе может наступить пробуксовка ремня и передача движения прекратится.

    Резьбовые соединения Резьбовыми соединениями называют разъемные соединения деталей с помощью резьбы или резьбовых деталей (болта, винта, шпильки, гайки, шайбы). Основные достоинства резьбовых соединений: высокая нагрузочная способность и надежность; удобство сборки и разборки; возможность точной установки соединяемых деталей при любом положении в пространстве; возможность фиксирования зажима в любом положении благодаря самоторможению; небольшие габариты и масса; большая номенклатура резьбовых деталей, приспособленных к различным эксплуатационным условиям.

    Конструкции шпилек Шпильки применяют в тех случаях, когда в конструкции соединения нет места для головки болта или невозможно просверлить сквозное отверстие под болт.  Шпильку используют также в тех случаях, когда материал соединяемых деталей не обеспечивает достаточной долговечности резьб при частых сборках и разборках (алюминиевые или магниевые сплавы, серый чугун).

    Подшибники качения Выполняя лабораторную работу, студент обязан изучить конструкции и особенности основных видов подшипников качения по натурным образцам, представленным на стенде и в литературе, ознакомиться с их классификацией и условными обозначениями.

    Критерии работоспособности подшипников качения Основные виды разрушения деталей подшипников качения: усталостное разрушение (выкрашивание) рабочих поверхностей тел качения и беговых дорожек колец вследствие циклического контактного нагружения – это основной вид разрушения подшипников наблюдается после длительной работы и сопровождается повышением шума и вибрации;

    Испытания материалов и определение их физико-механических характеристик Определение основных механических характеристик стали на растяжение изучение процесса деформирования при растяжении образца из малоуглеродистой стали, определение основных механических характеристик прочности, пластичности и марки стали.

    Влияние повторных нагрузок на механические свойства материалов.

    Испытание на сжатие образцов из различных материалов Ц е л ь р а б о т ы: изучение поведения пластичных, хрупких и анизотропных материалов при сжатии и определение их механических характеристик. Т е о р е т и ч е с к а я ч а с т ь р а б о т ы. Помимо испытания на растяжение вторым основным видом является испытание материалов на сжатие. При этом, так же как и при растяжении, получают диаграмму в координатах . Рассмотрим особенности поведения различных материалов при сжатии.

    Испытание на кручение образца из малоуглеродистой стали Ц е л ь р а б о т ы: определение модуля упругости второго рода (модуля сдвига), изучение процесса разрушения и определение механических характеристик стали и чугуна при кручении. Т е о р е т и ч е с к а я ч а с т ь р а б о т ы. В инженерной практике на кручение работают валы машин, витые пружины и др. При кручении круглого и кольцевого стержня возникает деформация чистого сдвига.

    В момент разрушения сопротивление деформированного образца вследствие упрочнения материала возрастает, и условная величина предела прочности   материала может быть определена по формуле

    Замеряют штангенциркулем диаметр образца   в трех сечениях с точностью 0,1 мм и, вычислив среднее значение, записывают в журнал наблюдений. На образце закрепляют угломер Бояршинова, обеспечив при помощи специального шаблона базу измерения  и устанавливают образец в захватах машины.

    Определение модуля продольной упругости и коэффициента Пуассона для стали

    Испытание материалов на выносливость Ц е л ь р а б о т ы: Ознакомление с методом определения предела выносливости материала и исследование влияния на его усталостную прочность концентрации напряжений.

    Снижают влияние концентрации напряжений двумя путями: а) конструктивными мероприятиями (увеличение радиусов переходов и т. п.); б) термохимической обработкой деталей (например, закалка ТВЧ, азотирование зон концентрации).

    Испытание различных материалов на ударную вязкость Ц е л ь р а б о т ы: Изучение методики определения ударной вязкости пластических масс и других неметаллических материалов при испытании стандартных образцов на маятниковом копре.

    Изучение напряженно-деформированного состояния элементов конструкций Определение нормальных напряжений в балке при прямом изгибе Ц е л ь р а б о т ы: Ознакомление с методом электротензометрирования. Опытное изучение закона распределения нормальных напряжений по высоте сечения балки и сравнение с напряжениями, вычисленными теоретически.

    Тарировочный коэффициент определяют следующим образом. Из партии одинаковых тензодатчиков отбирают необходимое количество рабочих и компенсационных тензодатчиков и приклеивают их, как описано выше, на исследуемую балку. К тарировочной балке приклеивают точно такой же тензодатчик. В данной работе используют типовую тарировочную балку типа СМ 25Б – консольную балку равного сопротивления (балку, по длине которой напряжения остаются постоянными).

    Определение главных напряжений при совместном изгибе и кручении тонкостенной трубы Ц е ль р а б о т ы: Определение опытным путем величины и направления главных напряжений в поверхностном слое тонкостенной трубы при кручении, а также при одновременном изгибе и кручении, и сравнение их с данными, полученными теоретическим расчетом.

    При кручении во всех точках на поверхности тонкостенной трубы возникает плоское напряженное состояние – чистый сдвиг. В этом случае известно, что главные напряжения направлены под углом  к продольной оси трубы.

    Определение напряжений при внецентренном растяжении бруса Ц е л ь р а б о т ы: Определить опытным путем нормальные напряжения в крайних волокнах поперечного сечения бруса при внецентренном растяжении и сравнить их с напряжениями, вычисленными теоретически.

    Работа выполняется на машине ДМ-30 М

    Определение напряжений в стенке тонкостенного сосуда Ц е л ь р а б о т ы: определение напряжений в стенке тонкостенного осесимметричного сосуда, находящегося под действием внутреннего давления, и сравнивание с напряжениями, полученными расчетным путем.

    Определение деформаций при прямом поперечном изгибе балки Ц е л ь р а б о т ы: экспериментальное определение деформаций балки при плоском поперечном изгибе и сравнение их с деформациями, вычисленными теоретическим расчетом.

    Определение деформаций при косом изгибе балки Ц е л ь р а б о т ы: определить опытным путем величину и направление прогиба свободного конца консоли при косом изгибе и сравнить полученные результаты с величинами, вычисленными теоретически.

    Определение момента в защемлении статически неопределимой балки Ц е л ь р а б о т ы: экспериментальное определение момента в защемлении статически неопределимой балки и сравнение его с моментом в защемлении, полученным теоретическим путем.

    Проверка интеграла Мора на примере плоской статически неопределимой рамы Ц е л ь р а б о т ы: Опытное определение величины горизонтального перемещения подвижной опоры статически определимой рамы и распорного усилия статически неопределимой рамы. Сравнение этих величин с данными, полученными по теоретическим формулам.

    Проверка теории изгибающего удара Ц е л ь р а б о т ы: опытное определение динамического коэффициента при изгибающем ударе по середине пролета двухопорной балки и сравнение его с динамическим коэффициентом, полученным расчетом.

    Определение критической силы при продольном изгибе Ц е л ь р а б о т ы: изучение явления потери устойчивости при осевом сжатии прямого стержня и сравнение критической силы, определенной опытным путем и вычисленной по формуле Эйлера при различных способах закрепления стержня.

    Обработка и предоставления результатов измерений Физической величиной называют свойство, общее в качественном отношении многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта. При этом индивидуальность в количественном отношении следует понимать в том смысле, что свойство может быть для одного объекта в определенное число раз больше или меньше, чем для другого.

    Числовые характеристики случайных величин

    Пример: Результаты наблюдений в лабораторной работе № 3.5 прогиба балки , мм: 1,42; 1,63; 1,51; 1,68; 2,12. Требуется определить прогиб балки , полученный в опыте, и границы интервала, которые с вероятностью  = 0,90 накрывают суммарную погрешность измерений.

    Испытание на сжатие образцов из пластичных и хрупких материалов

    Цель курса сопротивление материалов. Основные определе-ния. Реальный объект и расчетная схема. Классификация тел по геометрическим параметрам. Классификация внешних сил. Гипо-тезы о свойствах материала. Опорные устройства.
    Внутренние силы. Напряжения. Метод сечений. Внутренние силовые факторы в поперечном сечении бруса и соответствующие им виды деформаций.
    Принцип независимости действия сил. Принцип Сен-Венана.
    Тема 2. Центральное растяжение-сжатие прямого стержня
    Внутренние силовые факторы в стержне при центральном растяжении-сжатии. Гипотеза плоских сечений. Продольные и поперечные деформации, коэффициент Пуассона. Закон Гука при одноосном растяжении-сжатии. Перемещения стержня и его уд-линение.
    Построения эпюр продольных сил.
    Напряжения в наклонных сечениях стержня при растяжении-сжатии.
    Экспериментальное определение механических характери-стик материалов при центральном растяжении-сжатии. Диаграмма условная и истинная. Механические характеристики материала. Пластичные и хрупкие материалы. Закон разгрузки и повторного нагружения.
    Расчет на прочность по допускаемым напряжениям. Коэф-фициент запаса прочности, условие прочности. Проектировочный расчет, определение площади поперечного сечения. Определение допускаемой нагрузки. Проверочный расчет.
    Расчет на жесткость. Условие жесткости.
    Тема 3. Сдвиг
    Явление сдвига. Чистый сдвиг. Связь между модулями уп-ругости и сдвига и коэффициентом Пуассона. Расчет элементов конструкций на срез, смятие.
    Тема 4. Геометрические характеристики
    поперечных сечений
    Основные определения. Статические моменты плоской фи-гуры. Моменты инерции сечения. Главные оси и главные моменты инерции. Моменты сопротивления сечения. Моменты инерции простых фигур.
    Тема 5. Кручение
    Внутренние силовые факторы при кручении. Кручение вала круглого поперечного сечения. Построение эпюр крутящих мо-ментов.
    Деформации и напряжения при кручении круглого бруса. Расчет на прочность и жесткость при кручении бруса круглого поперечного сечения.
    Тема. 6. Прямой поперечный изгиб
    Виды изгиба бруса. Внутренние силовые факторы при пря-мом поперечном изгибе. Построение эпюр внутренних силовых факторов в балках.
    Нормальные и касательные напряжения при прямом попе-речном изгибе. Расчеты на прочность при изгибе. Критерий ра-циональности формы поперечного сечения балки по прочности.
    Определение перемещений при поперечном изгибе. Диффе-ренциальное уравнение изогнутой оси и его интегрирование для простых балок. Расчет балок на жесткость.
    Тема 7. Основы напряженного состояния.
    Теории прочности
    Напряженное состояние в точке тела. Тензор напряжений. Понятие о главных площадках и главных напряжениях. Класси-фикация напряженных состояний. Анализ плоского напряженного состояния.
    Эквивалентные напряжения. Теория наибольших нормаль-ных напряжений. Теория наибольших относительных удлинений. Теория максимальных касательных напряжений. Теория удельной потенциальной энергии изменения формы.
    Тема 8. Сложное нагружение
    Изгиб с кручением круглых валов. Расчет на прочность.
    Косой изгиб. Расчет на прочность.
    Внецентренное растяжение-сжатие. Определение напряже-ний, расчет на прочность.
    Тема 9. Устойчивость сжатых стержней
    Понятие потери устойчивости для идеального стержня. Кри-тическая сила. Задача Эйлера. Гибкость стержня. Пределы при-менимости формулы Эйлера. Устойчивость сжатых стержней за пределами пропорциональности. Зависимость критических на-пряжений от гибкости. Расчеты на устойчивость.
    Тема 10. Прочность при напряжениях, циклически
    меняющихся во времени
    Явление усталости. Цикл напряжений и предел выносливо-сти. Влияние концентрации напряжений, размеров, качества об-работки поверхности и других факторов на сопротивление уста-лости. Запас усталостной прочности при сложном напряженном состоянии.

    Курс лекций Сопротивление материалов