Математика. Контрольные, курсовые и дипломные работы от лучших авторов!

Тройной интеграл Скалярное и векторное поле Геометрический смысл производной Числовые ряды Введение в ТФКП Вычислить интеграл Задачи и примеры Изменить порядок интегрирования Физические приложения тройных интегралов

Курс лекций по высшей математики Оглавление

Дискретная математика.

Элементы комбинаторики.

 

 Если из некоторого количества элементов, различных меду собой, составлять различные комбинации, то среди них можно выделить три типа комбинаций, носящих общее название – соединения.

 Рассмотрим подробнее эти три типа соединений:

 1) Перестановки.

Определение. Если в некотором множестве  переставлять местами элементы, оставляя неизменным их количество, то каждая полученная таким образом комбинация называется перестановкой.

 

 Общее число перестановок из m элементов обозначается Pm и вычисляется по формуле:

 2) Размещения.

 Определение. Если составлять из т различных элементов группы по n элементов в каждой, располагая взятые элементы в различном порядке. Получившиеся при этом комбинации называются размещениями из т элементов по п.

 

 Общее число таких размещений расчитывается по формуле:

 

 Вообще говоря, перестановки являются частным случаем размещений.

 3) Сочетания.

 Определение. Если из т элементов составлять группы по п элементов в каждой, не обращая внимания на порядок элементов в группе, то получившиеся при этом комбинации называются сочетаниями из т элементов по п.

 

 Общее число сочетаний находится по формуле:

 

 

 Также одним из вариантов комбинаций являются перестановки с повторяющимися элементами.

 Если среди т элементов имеется т1 одинаковых элементов одного типа, т2 одинаковых элементов другого типа и т.д., то при перестановке этих элементов всевозможными способами получаем комбинации, количество которых определяется по формуле:

 

 Пример. Номер автомобиля состоит из трех букв и трех цифр. Сколько различных номеров можно составить, используя 10 цифр и алфавит в 30 букв.

 

 Очевидно, что количество всех возможных комбинаций из 10 цифр по 4 равно 10.000.

 Число всех возможных комбинаций из 30 букв по две равно .

Если учесть возможность того, что буквы могут повторяться, то число повторяющихся комбинаций равно 30 (одна возможность повтора для каждой буквы). Итого, полное количество комбинаций по две буквы равно 900.

 Если к номеру добавляется еще одна буква из алфавита в 30 букв, то количество комбинаций увеличивается в 30 раз, т.е. достигает 27.000 комбинаций.

 Окончательно, т.к. каждой буквенной комбинации можно поставить в соответствие числовую комбинацию, то полное количество автомобильных номеров равно 270.000.000

Правило Лопиталя

В главе 1 мы познакомились с приемами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, т.е. раскрытия неопределенностей типа  и . В этом разделе мы рассмотрим новый способ вычисления таких пределов, так называемое правило Лопиталя.

Теорема Лопиталя. (Раскрытие неопределенностей типа )

Пусть функции f(x), g(x) определены, непрерывны и дифференцируемы в точке x0 и некоторой ее окрестности, причем g'(x)  0 для любого x из этой окрестности, и пусть f(x0) = 0, g(x0) = 0 (следовательно, f(x), g(x) – бесконечно малые при). Если  существует, то существует и

=. (2.18)

Доказательство. Равенство (2.18) называют правилом Лопиталя для раскрытия неопределенностей типа .

Дадим значению аргумента x0 приращение x, такое, чтобы точка x = x0 + x принадлежала рассматриваемой окрестности точки x0.

Случай 1. x > 0, тогда x > x0. Функции f(x), g(x), рассматриваемые на отрезке [x0, x], удовлетворяют теореме Коши, поэтому найдется  такое c (x0, x), что выполняется равенство: =. Так как f(x0) = g(x0) = 0, то получим: =. Заметим, что число c зависит от x, но если , то , так как x0 < c < x. Переходя к пределу в последнем равенстве, получаем:

===.

Случай 2. x < 0, тогда x < x0. Функции f(x), g(x), рассматриваемые на отрезке
[x, x0], удовлетворяют условиям теоремы Коши, и потому доказательство аналогично, как в случае 1. Итак, теорема Лопиталя доказана.

 

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Комплексные числа. Операции над комплексными числами. Тригонометрическая форма комплексного числа. Понятие о функции нескольких переменных. Предел и непрерывность функции нескольких переменных. Частные производные и полный дифференциал функций нескольких переменных. Необходимое условие экстремума функции многих переменных. Производные высших порядков. Перестановочность частных производных по разным переменным. Достаточные условия экстремума функции двух переменных. Экстремум в замкнутой ограниченной области. Производная по направлению, градиент.

Курс лекций Сопротивление материалов