Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Курс лекций математического анализа Оглавление

Теоремы об эквивалентных б.м.

  Теорема 1

Пусть , ,  - б.м. при   причем ,  - одного порядка; а тогда    т.е. .  

Теорема 2 Для того, чтобы две б.м. при одном и том же стремлении x были эквивалентны необходимо и достаточно, чтобы их разность была б.м. более высокого порядка, чем каждая из них.   Обратно , т.е. Применяя теорему 1 видим, что соотношение  так же имеет место. Линейная алгебра Образует ли линейное пространство заданное множество, в котором определены сумма любых двух элементов  и  и произведение любого элемента   на любое число ?

 Теорема 3 Предел отношения двух б.м. не изменится, если одну из них или обе заменить на эквивалентную ей б.м.  Пусть , а  при  

Теорема 4 (принцип отбрасывания б.м. высшего порядка)

Пример 11. Доказать, что последовательность  монотонно возрастает и ограничена сверху, а последовательность  монотонно убывает и ограничена снизу. Отсюда вывести, что эти последовательности имеют общий предел .

 Второй замечательный предел

задаётся формулами ,  , где

или формулой (). Он применяется, в частности, при вычислении пределов 

, где  т.е. в случае неопределённости вида

 

Пример 12. Найти предел 

 Решение. Находим пределы основания и показателя степени исходного выражения и убеждаемся в том, что перед нами неопределённость вида  Выделяем в исходном выражении формулу  и вычисляем предел.

Демидович Б.П. Сборник задач и упражнений по математическому анализу: Учеб.пособие для вузов.- М.: ООО «Издательство Астрель»: ООО «Издательство АСТ», 2002.- 558 с.

Ляшко И.И., Боярчук А.А., Гай Я.Г., Головач Г.П. Математический анализ в примерах и задачах, ч.1. Введение в анализ, производная, интеграл. – Киев, Издательское объединение «Вища школа», 1974.-680 с.

Кузнецов Л.А. Сборник задач по высшей математике. Типовые расчёты: Учебное пособие. 3-е изд., испр.-СПб.: Издательство «Лань», 2005. -240 с.

Кузнецова М.Г. Типовой расчёт по высшей математике: Пределы.- Ульяновск: УлПИ, 1987.- 24 с.

Инженерная графика

 

Сопромат