Физические приложения интегралов

Вычислить интеграл Задачи и примеры

Теорема Стокса

Пример Используя теорему Стокса, найти криволинейный интеграл . Кривая C представляет собой пересечение цилиндра и плоскости .

Решение. Обозначим через S часть плоскости, вырезаемую цилиндром. Пусть обход кривой C осуществляется против часовой стрелки, если смотреть из конечной точки вектора нормали , координаты которого равны Так как , то можно записать Далее, применяя формулу Стокса, находим Проекция поверхности S на плоскость xy представляет собой круг радиуса a. Поэтому, записывая уравнение плоскости в виде и используя формулу получаем

Вычисление двойных интегралов.

При вычислении двойного интеграла  элемент площади  нам удобно представить в ином виде. Будем разбивать область интегрирования D в плоскости Oxy на частичные области посредством двух систем координатных линий: x=const, y=const. Этими линиями служат прямые, параллельные соответственно оси Oy и оси Ox, а частичными областями - прямоугольники со сторонами, параллельными осям координат. Ясно, что площадь каждой частичной области   будет равна произведению соответствующих  и . Поэтому элемент площади  мы запишем в виде  т.е. элемент площади в декартовых координатах является произведением дифференциалов независимых переменных. Мы имеем

 .  (*)

2 способ. Подстановки Эйлера. (1707-1783)

Если а>0, то интеграл вида  рационализируется подстановкой

.

Если a<0 и c>0, то интеграл вида  рационализируется подстановкой .

Если a<0 , а подкоренное выражение раскладывается на действительные множители a(x – x1)(x – x2), то интеграл вида  рационализируется подстановкой .

Отметим, что подстановки Эйлера неудобны для практического использования,

т.к. даже при несложных подынтегральных функциях приводят к весьма громоздким вычислениям. Эти подстановки представляют скорее теоретический интерес.

3 способ. Метод неопределенных коэффициентов.

Рассмотрим интегралы следующих трех типов:

где P(x) – многочлен, n – натуральное число.

Причем интегралы II и III типов могут быть легко приведены к виду интеграла I типа.

  Далее делается следующее преобразование:

в этом выражении Q(x)- некоторый многочлен, степень которого ниже степени многочлена P(x), а l - некоторая постоянная величина.

 Для нахождения неопределенных коэффициентов многочлена Q(x), степень которого ниже степени многочлена P(x), дифференцируют обе части полученного выражения, затем умножают на  и, сравнивая коэффициенты при одинаковых степенях х, определяют l и коэффициенты многочлена Q(x).

 Данный метод выгодно применять, если степень многочлена Р(х) больше единицы. В противном случае можно успешно использовать методы интегрирования рациональных дробей, рассмотренные выше, т.к. линейная функция является производной подкоренного выражения.

Привести к каноническому виду уравнение поверхности второго по­рядка  с помощью теории квадратичных форм. Сделать рисунок.

  Решение. Напишем уравнение этой поверхности в общем виде, выписывая и коэффициенты, равные нулю:

Теперь нетрудно записать и матрицу этой квадратичной формы:

Характеристическое уравнение имеет вид


Физические приложения поверхностных интегралов