Физические приложения интегралов

Вычислить интеграл Задачи и примеры

Теорема Стокса

Пусть S является гладкой поверхностью, ограниченной гладкой кривой C. Тогда для любой непрерывно дифференцируемой векторной функции

справедлива теорема Стокса: где ротор векторного поля . Символ показывает, что криволинейный интеграл вычисляется по замкнутой кривой. Будем предполагать, что ориентация поверхности и направление обхода кривой соответствуют правилу правой руки. В этом случае при обходе кривой поверхность всегда остается слева, если голова направлена в ту же сторону, что и вектор нормали (рисунок 1). Теорема Стокса связывает между собой криволинейные интегралы второго рода и поверхностные интегралы второго рода. В координатной форме теорема Стокса может быть записана в следующем виде:
Рис.1
Рис.2

Пример 12.

Проверить, является ли векторное поле

потенциальным, и в случае положительного ответа найти потенциал и, считая, что в начале координат он равен нулю.

Решение.

Поле является потенциальным, если выполнены следующие условия:

В нашем случае

Следовательно, поле  потенциальное. Найдем его потенциал и, считая, что и(0;0;0) = 0:

Векторное поле A = {Ax, Ay, Az} называется соленоидальным в области D, если в каждой точке этой области

 div A = 0. (59)

Привести к каноническому виду уравнение поверхности второго по­рядка  с помощью теории квадратичных форм. Сделать рисунок.

  Решение. Напишем уравнение этой поверхности в общем виде, выписывая и коэффициенты, равные нулю:

Теперь нетрудно записать и матрицу этой квадратичной формы:

Характеристическое уравнение имеет вид


Физические приложения поверхностных интегралов