Физические приложения интегралов

Вычислить интеграл Задачи и примеры

Физические приложения поверхностных интегралов

Пример Найти массу параболической оболочки, заданной уравнением и имеющей плотность .

Решение. Воспользуемся формулой Проекция D(x,y) параболической поверхности S на плоскость xy представляет собой круг радиусом 1 с центром в начале координат. Следовательно, можно записать Переходя в подынтегральном выражении к полярным координатам, получаем Сделаем подстановку . Тогда . Здесь u = 1 при r = 0, и при r = 1. Следовательно, интеграл равен

Заменяя в этой формуле S(x) её выражением, окончательно получим

или в более удобной форме

 (А)

Пределы внутреннего интеграла переменные; они указывают границы изменения переменной интегрирования у при постоянном значении второго аргумента х. Пределы внешнего интеграла постоянны; они указывают границы, в которых может изменяться аргумент х.

Меняя роли х и у, т. е. рассматривая сечения тела плоскостями y=const , мы найдем сначала, что площадь Q(у) такого сечения равна , где у при интегрировании считается величиной постоянной. Интегрируя затем Q(у) в пределах измене­ния у, т. е. от c до d, мы придем ко второму выражению для двойного интеграла

  (Б)

 Здесь интегрирование совершается сначала по х, а потом по у.

Пример.

14.5. Несколько примеров интегралов, не выражающихся через

элементарные функции.

 К таким интегралам относится интеграл вида , где Р(х) - многочлен степени выше второй. Эти интегралы называются эллиптическими.

 Если степень многочлена Р(х) выше четвертой, то интеграл называется ультраэллиптическим.

 Если все – таки интеграл такого вида выражается через элементарные функции, то он называется псевдоэллиптическим.

  Не могут быть выражены через элементарные функции следующие интегралы:

 - интеграл Пуассона ( Симеон Дени Пуассон – французский математик (1781-1840))

 - интегралы Френеля (Жан Огюстен Френель – французский ученый (1788-1827) - теория волновой оптики и др.)

 - интегральный логарифм

 - приводится к интегральному логарифму

 - интегральный синус

 - интегральный косинус

Физические приложения поверхностных интегралов

Рассмотрим теперь задачи шестого типа, где предлагается привести к кано­ническому виду уравнение поверхности второго порядка с помощью теории квадратичных форм.

  Рассмотрим общее уравнение поверхности второго порядка

 

 ,

которое только при специально выбранной системе координат будет являться каноническим (простейшим) уравнением поверхности рассмотренного выше вида.

 Выпишем отдельно слагаемые второго порядка относительно координат . Они образуют так называемую квадратичную форму Ф, которую можно записать так: