Физические приложения интегралов

Вычислить интеграл Задачи и примеры

Физические приложения криволинейных интегралов

Пример Вычислить индукцию магнитного поля в вакууме на расстоянии r от оси бесконечно длинного проводника с током I.

Решение. Чтобы найти магнитное поле на расстонии r от проводника, рассмотрим круговой контур радиуса r, расположенный перпендикулярно проводнику с током (рисунок 7). Поскольку поле направлено по касательной к круговому контуру в любой его точке, то скалярное произведение векторов и есть просто . Тогда можно записать В результате получаем

Пример 8 Оценить значение электродвижущей силы ε и электрического поля E, возникающих в кольце радиусом 1 см у пассажира самолета, при полете самолета в магнитном поле Земли со скоростью 900 км/ч.

Решение. Согласно закону Фарадея Поскольку проводящее кольцо перемещается в магнитном поле Земли, возникает изменение магнитного потока ψ, проходящего через кольцо. Предположим, что магнитное поле перпендикулярно плоскости кольца. Тогда за время изменение потока равно где , v − скорость самолета, B − индукция магнитного поля Земли. Из последнего выражения получаем Подставляя заданные величины находим значение э.д.с.: Как видно, это вполне безопасно для авиапассажиров. Напряженность возникающего электрического поля найдем по формуле . В силу симметрии, наведенное электрическое поле будет иметь постоянную амплитуду в любой точке кольца. Оно будет направлено по касательной к кольцу в любой его точке. Это позволяет легко вычислить криволинейный интеграл. Следовательно, напряженность электрического поля равна

Физические приложения поверхностных интегралов

Рассмотрим теперь задачи шестого типа, где предлагается привести к кано­ническому виду уравнение поверхности второго порядка с помощью теории квадратичных форм.

  Рассмотрим общее уравнение поверхности второго порядка

 

 ,

которое только при специально выбранной системе координат будет являться каноническим (простейшим) уравнением поверхности рассмотренного выше вида.

 Выпишем отдельно слагаемые второго порядка относительно координат . Они образуют так называемую квадратичную форму Ф, которую можно записать так: