Курсовые
Черчение

Теплоэнергетика

Электротехника
Карта

 

Ориентация на матричные операции


Напомним, что двумерный массив чисел или математических выражений принято называть матрицей. А одномерный массив называют вектором. Примеры векторов и матриц даны ниже:{l, 2, 3, 4} — вектор из 4 элементов;
1 2 3 4
5 6 7 8 матрица размера 3x4;
9 8 7 6

а а+b а+b/с
х у*х z
1 2 3
матрица с элементами разного типа.

Векторы и матрицы характеризуются размерностью и размером. Размерность определяет структурную организацию массивов в виде строки (размерность 1), страницы (размерность 2), куба (размерность 3) и т. д. Так что вектор является одномерным массивом, а матрица представляет собой двумерный массив с размерностью 2. MATLAB допускает задание и использование многомерных массивов, но в этой главе мы пока ограничимся только одномерными и двумерными массивами — векторами и матрицами.
Размер вектора — это число его элементов, а размер матрицы определяется числом ее строк т и столбцов п. Обычно размер матрицы указывают как тхп. Матрица называется квадратной, если m = n, то есть число строк матрицы равно числу ее столбцов.
Векторы и матрицы могут иметь имена, например V — вектор или М — матрица. В данной книге имена векторов и матриц набираются полужирным шрифтом. Элементы векторов и матриц рассматриваются как индексированные переменные, например:

Система MATLAB выполняет сложные и трудоемкие операции над векторами и матрицами даже в режиме прямых вычислений без какого-либо программирования. Ею можно пользоваться как мощнейшим калькулятором, в котором наряду с обычными арифметическими и алгебраическими действиями могут использоваться такие сложные операции, как инвертирование матрицы, вычисление ее собственных значений и принадлежащих им векторов, решение систем линейных уравнений, вывод графиков двумерных и трехмерных функций и многое другое.
Интересно отметить, что даже обычные числа и переменные в MATLAB рассматриваются как матрицы размера 1x1, что дает единообразные формы и методы проведения операций над обычными числами и массивами. Данная операция обычно называется векторизацией. Векторизация обеспечивает и упрощение записи операций, производимых одновременно над всеми элементами вектрров и матриц, и существенное повышение скорости их выполнения. Это также означает, что большинство функций может работать с аргументами в виде векторов и матриц. При необходимости вектора и матрицы преобразуются в массивы, и значения вычисляются для каждого их элемента.

 

Visual Studio.Net Разработка приложений

Урок 12.Некоторые сведения об архитектуре Windows
Windows 2000 — многозадачная операционная система
Уровни и платформы
Однозадачные операционные системы
Многозадачные операционные системы
Процессы и потоки
Приоритеты процессов
Приоритеты потоков Основы программирования
Переключение потоков
Архитектура памяти Win32
Разделы адресного пространства
Подсистемы ОС
Взаимодействие подсистем
Разделяемые ресурсы
Стратегии решения проблемы
Транзакции
Тупиковая ситуация (Deadlock)
Механизмы синхронизации
Критические секции
Мьютексы (Mutexes)
События
Семафоры
Блокировки (Locks)
Специальные блокировки
Устранение тупиковых ситуаций

Инженерная графика

 

Сопромат