Математика. Контрольные, курсовые и дипломные работы от лучших авторов!

Тройной интеграл Скалярное и векторное поле Геометрический смысл производной Числовые ряды Введение в ТФКП Вычислить интеграл Задачи и примеры Изменить порядок интегрирования Физические приложения тройных интегралов

Символьные (аналитические) операции

 Интенсивность зеркально отраженного света зависит от угла падения, длины волны и свойств вещества. Так как физические свойства зеркального отражения довольно сложны, то в простых моделях освещения обычно пользуются следующей эмпирической моделью (моделью Фонга):

, (4)

где  – экспериментальная постоянная;

 – угол между отраженным лучом и вектором наблюдения;

p – степень, аппроксимирующая пространственное распределение света (рисунок 7.2).

 Объединяя последние две формулы, получаем модель освещения (функцию закраски), используемую для расчета интенсивности (или тона) точек поверхности объекта (или пикселей изображения):

. (5)

 Функцию закраски, используя единичные векторы внешней нормали n, а также единичные векторы, определяющие направления: на источник света (вектор l), отраженного луча (вектор r) и наблюдения (вектор s), можно записать в следующем виде:

. (6)

 Чтобы получить цветное изображение, необходимо найти функции закраски для каждого из трех основных цветов – красного, зеленого и синего. Поскольку цвет зеркально отраженного света определяется цветом падающего, то постоянная  считается одинаковой для каждого из этих цветов.

Билеты к экзамену по высшей математике