Высшая математика - лекции, курсовые, типовые задания, примеры решения задач

Курс лекций - первый семестр
Линейная алгебра Операция умножения матриц Матричный метод решения систем линейных уравнений
Элементы векторной алгебры Линейные операции над векторами в координатах Векторное произведение векторов
Аналитическая геометрия в пространстве
Введение в математический анализ
Дискретная математика Бином Ньютона. (полиномиальная формула) Булевы функции Элементы математической логики
Курс лекций - второй семестр
Дифференциальное исчисление функции одной переменной Логарифмическое дифференцирование Дифференциал функции
Интегральное Первообразная функция Методы интегрирования Вычисление определенного интеграла

Кратные интегралы Градиент Геометрические и физические приложения кратных интегралов

Курс лекций - третий семестр
Дифференциальные уравнения первого порядка Уравнения в полных дифференциалах. Сложение матриц Операция сложения определена лишь для матриц одинакового размера
Ряды Критерий Коши Степенные ряды Ряды Фурье Ряды Тейлора и Лорана
Курс лекций - четвертый семестр
Теория вероятностей. Основные понятия Операции над событиями Распределение Пуассона Примеры решения задач
Математический анализ
Двойной интеграл вычисление Двойной интеграл в полярных координатах
Тройной интеграл Тройной интеграл в цилиндрических и сферических координатах. Интегралы по поверхности 1 и 2 рода.
Скалярное и векторное поле Определение и основные свойства градиента, дивергенции, ротора, потока и циркуляции векторного поля.

Математический анализ часть 2

Функции Свойства функций Показательно-степенная функция
Геометрический смысл производной Правила дифференцирования обратной функции
Логарифмическое дифференцирование Разложение по формуле Маклорена некоторых элементарных функций
Математический анализ часть 3
Числовые ряды Критерий Коши сходимости. Свойства сходящихся рядов. Признаки Даламбера, Коши, Гаусса.
Линейное дифференциальное уравнение 1-го порядка.
Введение в ТФКП функции комплексного переменного Пространственная комплексная система чисел Интегральные теоремы Коши в комплексном пространстве
Дифференциальные уравнения Физические задачи
Билеты к экзамену по высшей математике

Вычислить интеграл Задачи и примеры

Интегрирование рациональных выражений тригонометрических функций Интегрирование любого рационального выражения тригонометрических функций можно всегда свести к интегрированию алгебраической рациональной функции используя универсальную тригонометрическую подстановку x = 2arctg t (или ).

Вычислить интеграл

Вычислить интеграл

Вычислить интеграл

Найти интеграл

В данной секции мы рассмотрим вычисление интегралов вида , где R - рациональная функция x и квадратного корня . Предварительно преобразуем квадратичную функцию под знаком корня, выделив в ней полный квадрат: Применение пределов в экономических расчетах

Вычислить интеграл .

Вычислить интеграл .

Вычислить интеграл . Вычисление определённых интегралов Математика учебники, задачи

Найти интеграл .

Найти интеграл .

Интегрирование рациональных функций

Для интегрирования рациональной функции , где P(x) и Q(x) - полиномы, используется следующая последовательность шагов:

  1. Если дробь неправильная (т.е. степень P(x) больше степени Q(x)), преобразовать ее в правильную, выделив целое выражение;
  2. Разложить знаменатель Q(x) на произведение одночленов и/или несократимых квадратичных выражений;
  3. Разложить рациональную дробь на простейшие дроби, используя метод неопределенных коэффициентов; http://zreloe-tv.com/
  4. Вычислить интегралы от простейших дробей.

Вычислить интеграл . . . .

В данном разделе мы рассмотрим 8 специальных классов интегралов от тригонометрических функций. Для каждого класса применяются определенные преобразования и подстановки, позволяющие получить аналитическое решение.

Интегрирование некоторых классов тригонометрических функций

Найти интеграл . . .

Повторные интегралы Области интегрирования I и II типа Двойные интегралы вычисляются, как правило, с помощью повторных интегралов. Однако переход от двойных к повторным интегралам возможен не для произвольной области интегрирования R, а для областей определенного типа.

Найти повторный интеграл . Вычислить .

Изменить порядок интегрирования в повторном интеграле .

Криволинейные интегралы первого рода

Найти интеграл вдоль отрезка прямой y = x от начала координат до точки (2,2)

Вычислить интеграл , где C − кривая, заданная уравнением .

Вычислить интеграл , где кривая C задана параметрически в виде .

Найти криволинейный интеграл , где кривая C является дугой эллипса , лежащей в первом

Криволинейные интегралы второго рода

Вычислить интеграл , где кривая C задана параметрически в виде .

Вычислить вдоль кривой от точки O (0,0) до A (1,1)

Вычислить криволинейный интеграл вдоль кривой в интервале

Вычислить криволинейный интеграл , где C − дуга эллипса (рисунок 6), заданного параметрически в виде .

Теорема Остроградского-Гаусса

Применяя теорему Остроградского-Гаусса, вычислить поверхностный интеграл от векторного поля , где S − поверхность тела, образованного цилиндром и плоскостями z = −1, z = 1

Используя формулу Остроградского-Гаусса, оценить поверхностный интеграл от векторного поля , где S − поверхность тела, ограниченного и плоскостью z = 1.

Вычислить поверхностный интеграл от векторного поля , где S − поверхность параллелепипеда, образованного плоскостями x = 0, x = 1, y = 0, y = 2, z = 0, z = 3

Независимость криволинейных интегралов от пути интегрирования

Вычислить криволинейный интеграл для двух путей интегрирования: 1) AB − отрезок прямой от точки A (0,0) до точки B (1,1); 2) AB − участок параболы от A (0,0) до B (1,1).

Показать, что криволинейный интеграл , где точки A, B имеют координаты A (1,2), B (4,5), не зависит от пути интегрирования, и найти значение этого интеграла.

Определить, является ли векторное поле потенциальным?

Определить, является ли потенциальным векторное поле ?

Физические приложения двойных интегралов

Определить координаты центра тяжести однородной пластины, образованной параболами и .

Вычислить моменты инерции треугольника, ограниченного прямыми и имеющего плотность .

Физические приложения криволинейных интегралов

С помощью криволинейных интегралов вычисляются

  • Масса кривой;
  • Центр масс и моменты инерции кривой;
  • Работа при перемещении тела в силовом поле;
  • Магнитное поле вокруг проводника с током (Закон Ампера);
  • Электромагнитная индукция в замкнутом контуре при изменении магнитного потока (Закон Фарадея).

Работа поля

Определить массу проволоки, имеющей форму отрезка от точки A(1,1) до B(2,4). Масса распределена вдоль отрезка с плотностью .

Определить массу проволоки, имеющей форму дуги окружности от точки A(1,0) до B(0,1) с плотностью

Найти центр масс проволоки, имеющей форму кардиоиды

Вычислить момент инерции Ix проволоки в форме окружности x2 + y2 = a2 с плотностью ρ = 1.

Тело массой m брошено под углом к горизонту α с начальной скоростью v0. Вычислить работу силы притяжения за время движения тела до момента соударения с землей.

Вычислить индукцию магнитного поля в вакууме на расстоянии r от оси бесконечно длинного проводника с током I.

Физические приложения поверхностных интегралов

Поверхностные интегралы применяются во многих прикладных расчетах. В частности, с их помощью вычисляются

  • Масса оболочки;
  • Центр масс и моменты инерции оболочки;
  • Сила притяжения и сила давления;
  • Поток жидкости и вещества через поверхность;
  • Электрический заряд, распределенный по поверхности;
  • Электрические поля (теорема Гаусса в электростатике).

Сила притяжения между поверхностью S и точечным телом m определяется выражением

Найти массу цилиндрической оболочки, заданной параметрически в виде , где

Найти массу параболической оболочки, заданной уравнением и имеющей плотность .

Найти центр масс части сферической оболочки , расположенной в первом октанте и имеющей постоянную плотность μ0.

Вычислить момент инерции однородной сферической оболочки x2 + y2 + z2 = 1 (z ≥ 0) с плотностью μ0 относительно оси Oz.

Найти силу притяжения между полусферой с постоянной плотностью μ0 радиусом r с центром в начале координат и точечной массой m, расположенной в начале координат.

Оценить силу давления, действующую на дамбу, схематически показанную на рисунке 6 и представляющую собой резервуар воды шириной W и высотой H.

Физические приложения тройных интегралов

Найти центроид однородного полушара радиусом R.

Определить массу и координаты центра тяжести единичного куба с плотностью ρ(x,y,z) = x + 2y + 3z

Найти массу шара радиуса R, плотность γ которого пропорциональна квадрату расстояния от центра.

С какой силой притягивает однородный шар массы M материальную точку массы m, расположенную на расстоянии a от центра шара (a > R)?

Пусть планета имеет радиус R, а ее плотность выражается зависимостью

Теорема Стокса

Показать, что криволинейный интеграл равен 0 вдоль любого замкнутого контура C.

Используя теорему Стокса, найти криволинейный интеграл .

Вычислить криволинейный интеграл , используя теорему Стокса.

Найти интеграл с использованием теоремы Стокса

Hеподвижные pазьемные соединения Инженерная графика Разработка чертежей в среде AutoCAD
Курс лекций Сопротивление материалов