Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Колебаниями называются движения или процессы, обладающие той или иной повторяемостью во времени.

Примеры колебаний:

  1. колебание величины заряда на обкладках конденсатора в колебательном контуре;

  2. колебание грузика, закрепленного на пружине;

  3. колебание маятника.

  4. 14.1.1. Гармонические колебания

Гармонические колебания - это такие колебания, при которых колеблющаяся величина x изменяется со временем по закону синуса, либо косинуса:

,

или

гдеA - амплитуда;
    ω - круговая частота;
    α - начальная фаза;
( ωt + α ) - фаза.

14.1.1.1. Фаза колебания

Фаза колебания - это аргумент гармонической функции: ( ωt + α ). Начальная фаза α - это значение фазы в начальный момент времени, т.е. при t = 0.

14.1.1.2. Амплитуда колебания

Амплитуда колебанияA - это наибольшее значение колеблющейся величины.

14.1.1.3. Круговая или циклическая частота ω

При изменении аргумента косинуса, либо синуса на эти функции возвращаются к прежнему значению. Найдем промежуток времени T, в течение которого фаза гармонической функции изменяется на .

ω(t + T) +α = ωt + α + 2π,

или

ωT = .
.

Время T одного полного колебания называется периодом колебания. Частотойν называют величину, обратную периоду

.

Единица измерения частоты - герц (Гц), 1 Гц = 1 с-1.

Так как

,

то

.

Круговая, или циклическая частоты ω в раз больше частоты колебаний ν. Круговая частота - это скорость изменения фазы со временем. Действительно:

.

14.1.1.4. График гармонического колебания


14.2 Дифференциальное уравнение гармонических колебаний

14.2.1 Колеблющиеся системы

Рассмотрим колебания в трех системах:

а) колебания заряда в колебательном контуре L,C;

б) колебания грузика, прикрепленного к пружине;

в) колебание физического маятника - любого тела, совершающего колебания вокруг горизонтальной оси, не проходящей через его центр тяжести.


 

14.2.2 Колеблющиеся величины

q - заряд
x - координата грузика
φ - угол отклонения

 

14.2.3. Уравнения движения

Закон Ома

Второй закон Ньютона

Уравнение динамики вращательного движения

 

14.2.4. Применим закон движения, т.е. учтем особенности наших систем:

Используя другое обозначение производной получим после несложных преобразований:

Мы получили дифференциальные уравнения, описывающие движения наших систем. В первых двух случаях уравнения одинаковы по форме, в третьем случае второй член уравнения содержит не φ, а Sin φ . Если рассматривать только малые отклонения маятника от положения равновесия, то тогда, при φ<< 1, Sin φ ≈ φи мы имеем:

.

Введем обозначения:

,,,
,,.

14.2.5. Дифференциальное уравнение колебательного движения

Для всех трех рассмотренных случаев имеем одно и то же дифференциальное уравнение колебательного движения

.

14.2.6. Решение дифференциального уравнения

Решением дифференциального уравнения называется функция, обращающая это уравнение в тождество.

Нетрудно проверить прямой подстановкой, что в нашем случае решение имеет вид:

,

т.е. является гармонической функцией. Значит уравнение , это дифференциальное уравнение гармонических колебаний.


Инженерная графика

 

Сопромат