Импульсные реакторы  Атомные батареи в космосе

Источники ионизируещего излучения

Нейтронное излучение - это нейтральные частицы с массой протона, являются неустойчивыми и используются для определения характеристик горных пород - нейтронный каротаж.
Атомные батареи в космосе

Первое широкое применение атомные батареи нашли в космосе, поскольку именно там требовались источники энергии, способные вырабатывать тепло и электричество в течение длительного времени, в условиях резкого и очень сильного перепада температур, при значительных переменных нагрузках, и поскольку в условиях непилотируемых полётов радиоизлучение от источника питания не несло большой угрозы (в космосе и без него излучений хватает). Химические источники энергии не оправдали себя. Так, когда 4.10.1957 в СССР был выведен на орбиту первый искусственный спутник Земли, то его химические батареи могли давать энергию в течение 23-х дней. После этого мощность их была исчерпана. Кремниевые солнечные батареи эффективны лишь при полётах вблизи Солнца, для полётов к удалённым планетам солнечной системы они не годятся.

Способы преобразования энергии на космических аппаратах бывают двух видов: прямое и машинное. Типы преобразователей тепловой энергии в электрическую делятся на статические (т.е. без подвижных частей), и динамические (т.е. с подвижными, вращающимися или двигающимися частями). Проблема выбора вида преобразования энергии по-прежнему остается актуальной разработчиков различных преобразователей и космических ядерных энергетических установок (КЯЭУ) на их основе.

Так, в рамках известной инициативы НАСА по космическим ядерным энергетическим установкам для реализации программы «Прометей» по проекту «Джимо» (орбитальная экспедиция к ледяным лунам Юпитера) выбран динамический преобразователь (газо-турбинная установка на основе цикла Брайтона). Ресурс КЯЭУ 10 лет при выходной электрической мощности от 250 кВт(эл).

Начиная с начала шестидесятых годов, достаточно широкий размах в СССР, США и ряде других стран получили работы по прямому преобразованию тепловой энергии в электрическую на основе термоэлектрических и термоэмиссионных преобразователей. Подобные методы преобразования энергии принципиально упрощают схему установок, исключают промежуточные этапы превращения энергии и позволяют создать компактные и лёгкие энергетические установки.

В 1959 в рамках проекта «Орион» комиссия по атомной энергии США приняла решение создать целую серию ядерных вспомогательных источников энергии – сокращённо SNAP (System for nuclear auxiliar Power). В соответствии с этой программой, в США приступили к разработке устройств, в которых электроэнергия получается при использовании тепла – либо выделяемого при радиоактивном распаде изотопов, либо вырабатываемого при делении ядер урана в небольших ядерных реакторах (таким источникам тока присваивались нечётные номера).

Рис.1 Источник энергии SNAP-1A.

1 – тепловая изоляция, 2 – тепловые экраны, 3-
термоэлектрические преобразователи, 4 – пространство,
заполненное ртутью, 5 – таблетки церия, 6 – охлаждаемый
змеевик, 7 – изоляция

Исторически первым был разработан термоэлектрический генератор SNAP-1A мощностью 125 Вт с ртутной защитой СССР использовал атомные батареи в спутниках типа «Космос» Основные характеристики КЯЭУ, получившие реальный опыт использования в составе космических аппаратов в США и СССР/России

Перспективно применение атомных батарей и в медицине, например, для снабжения энергией сердечных регуляторов. Атомные батареи для маяков, бакенов и створных знаков

Другой РИТЭГ, выпускаемый в России, с источником тепла на основе стронций-90 «РИТ-90» представляет собой закрытый источник излучения, в котором топливная композиция обычно в форме керамического титанатастронция-90 (SrTiO3) дважды герметизирована аргоно-дуговой сваркой в капсуле. Для высокоэнергоёмких радионуклидных энергетических установок в качестве топлива применяют плутоний-238. Космическая гонка, особенно в военной сфере, потребовала энергооснащенности спутников, в десятки раз превышающей ту, что могли обеспечить солнечные батареи или изотопные источники питания.

В 50-х годах в СССР начаты работы по созданию реакторной термоэлектрической энергоустановки «БУК» с малогабаритным реактором на быстрых нейтронах и находящимся вне реактора термоэлектрическим генератором на полупроводниковых элементах Выполненный комплекс работ с установкой "Ромашка" показал её абсолютную надёжность и безопасность. В СССР параллельно работам по созданию ЯЭУ с термоэлектрическими генераторами проводились работы по ЯЭУ с термоэмиссионными преобразователями, имеющими более высокие технические характеристики Ядерное топливо в Топазе-1 (диоксид урана обогащенный ураном-235) заключено в сердечнике из тугоплавкого материала, служащей катодом (эмиттером) для электронов.

ЯЭУ «Топаз-1» разрабатывалась для спутников радиолокационной разведки, «Топаз-2» – для космических аппаратов системы непосредственного телевизионного вещания из космоса.

РАДИОАКТИВНОСТЬ (от лат. radio - излучаю и activus-действенный), самопроизвольное превращение нестабильных атомных ядер в др. ядра, сопровождающееся испусканием частиц, а также жесткого электромагнитного излучения (рентгеновского или ?-излучения). Ядра нового нуклида, которые образуются в результате радиоактивного распада исходного нуклида (радионуклида), могут быть стабильными или радиоактивными. Различают естественную и искусственную радиоактивность. Естественная радиоактивность - это самопроизвольный распад ядер, встречающийся у некоторых веществ в природе (уран, радий, полоний и др.).
Космические ядерные аварии