Физика ядра и частиц Взаимодействие частиц с веществом
Электромагнитное взаимодействие Кварки Атомное ядро Магнитный дипольный момент ядра Законы радиоактивного распада ядер. Альфа-распад. Бета-распад Естественная радиоактивность

Учебные материалы по ядерной физике, курс физика атомного ядра и частиц

Распространенность элементов

    Распространенностью элементов называется число ядер данного элемента в веществе, приходящееся на определенное число ядер эталонного элемента. В качестве эталонного элемента обычно выбирают водород или кремний. Экспериментальные данные о распространенности различных элементов получают путем анализа элементного состава Земли, Луны и других планет, метеоритов, на основе спектрального анализа Солнца и других звезд межзвездной среды, а также из содержания различных ядер в составе космических лучей. Имеются сложности как в реализации различных методов определения распространенности химических элементов, так и в интерпретации результатов наблюдений. Все это приводит к погрешностям в определении распространенности элементов.

Рис.1
Рис. 1. Распространенность нуклидов относительно Si в зависимости от массового числа (выбраны такие единицы, в которых распространенность Si равна 106)

    Распространенность элементов как функция массового числа, построенная на основе анализа информации о распространенности элементов на Земле, в метеоритах, на Солнце и в звездах, схематически показана на рис. 1. Указаны процессы, ответственные за формирование различных участков кривой распространенности.
    Среди наиболее существенных особенностей распространенно-сти элементов можно выделить следующие:

  1. Вещество во Вселенной в основном состоит из водорода - 90% всех атомов.
  2. По распространенности гелий занимает второе место, составляя ~ 10% от числа атомов водорода.
  3. Существует глубокий минимум, соответствующий литию, бериллию и бору.
  4. Сразу за этим глубоким минимумом следует максимум, обусловленный повышенной распространенностью углерода и кислорода.
  5. Вслед за кислородным максимумом идет скачкообразное падение вплоть до скандия (Z=21, A=45).
  6. Наблюдается резкое повышение распространенности элементов в районе железа (“железный пик”).
  7. После A ~ 60 уменьшение распространенности происходит более плавно.
  8. Наблюдается заметное различие между элементами с четным и нечетным Z. Как правило, элементы с четным Z являются более распространенными.
  9. Ряд ядер, так называемые обойденные ядра - 74Se, 78Kr, 92Mo, 96Ru и др., имеют распространенность на два порядка меньшую, чем соседние ядра. Эти особенности распространенности элементов и должны быть объяснены в теории образования элементов.

    Для объяснения образования химических элементов в 1948 году Г. Гамовым была выдвинута теория Большого взрыва. Согласно модели Гамова синтез всех элементов происходил во время Большого взрыва в результате неравновесного захвата атомными ядрами нейтронов с испусканием гамма-квантов и последующим betam.gif (71 bytes)-распадом тяжелых ядер. Однако детальные расчеты показали, что в этой модели невозможно объяснить образование элементов тяжелее Li. На начальном этапе эволюции Вселенной, примерно через 100 с после Взрыва, при температуре ~ 109 K в термоядерных реакциях образовались лишь самые легкие атомные ядра - изотопы водорода и гелия.

n + p --->d + гамма ,

d + n --->t + гамма,t + p --->4He + гамма,
d + d --->t + p,
d + p --->3He + гамма,3He + n  --->4He + гамма.
d + d --->3He + n,

Согласно современным представлениям образование более тяжелых ядер на этом этапе оказывается невозможным. Более тяжелые ядра образовались лишь через миллиарды лет после Большого взрыва в процессе звездной эволюции.

Античастицы
Связь характеристик частиц и античастиц
Момент количества движения
Пространственная инверсия. Р-четность.
Распады частиц
Взаимные превращения частиц
Кварки, лептоны, калибровочные бозоны
Механизм взаимодействия частиц
Электромагнитное взаимодействие
Лептоны
Электрон
Электронное антинейтрино обнаружено
Тождественны ли нейтрино и антинейтрино?
Мюон. Мюонное нейтрино
Тау-лептон. Тау-нейтрино
Лептонные числа
Кванты слабого взаимодействия (W, Z-бозоны)
Кварки - частицы, из которых состоят адроны
Основные положения модели кварков
Кварковая структура адронов. Барионы. Мезоны
Барионное число B
Изоспин частиц. Изоспиновые мультиплеты
Пи-мезоны
Резонансы. Возбужденные состояния нуклонов
Странные частицы, s-кварк
K-мезоны
Распад лямбда-гиперона
Каскадные гипероны
Омега-минус-гиперон
Очарованные частицы, с-кварк
Нейтрино рождают очарованные частицы
Красивые частицы, b-кварк
Адронные струи
Топ-кварк

КРАТКАЯ ХАРАКТЕРИСТИКА СВОЙСТВ РАДИОАКТИВНЫХ ИЗЛУЧЕНИЙ Кратко рассмотрим основные свойства радиоактивных излучений, которые помогают зафиксировать определенный вид излучения; ознакомимся с методами радиометрических измерений, с применением этих методов для определения урана, радия, тория и других радиоактивных

Основные вопросы по курсу Физика ядра и частиц