Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Ядерные реакции

Векторная диаграмма импульсов

Вычислим величину . Из закона сохранения энергии:

,

(4.5.18)

Или, учитывая (4.5.10):

.

(4.5.19)

Из последнего уравнения находим

,

(4.5.20)

где

(4.5.21)

- есть приведенная масса частиц b и B

Полученные результаты можно использовать для построения векторной диаграммы импульсов, графически связывающей импульсы в ЛСК и СЦИ. Для этого отрезок, изображающий импульс Ра (рис. 4.5.4), надо разделить точкой 0 в отношении . Затем из этой точки радиусом (4.5.20) провести окружность. Тогда, если известна хотя бы одна из величин Рb , РB , θ,φ ,, из диаграммы можно определить графически все остальные.

В случае упругого рассеяния частицы выходного канала тождественны частицам входного канала и из (4.5.20) следует, что

.

(4.5.22)

§4 Теория атома водорода и водородоподобных ионов по Бору.

1.Эксперементальные факты, объясняемые теорией Бора:

а- размер атома водорода r=53 пм

б- энергия ионизации атома водорода Eи = 13,6 эв

Eи – энергия бомбардирующего электрона достаточная для того чтобы при соударении выбить электрон из атома.

Потенциал ионизации Uи – разность потенциалов которую должен пройти бомбардирующий электрон чтобы приобрести энергию достаточную для ионизации атома.

Eи = eUи

в- закономерность линейчатого спектра.

1/λ = R(1/ni2-1/nj2)

2. Радиусы орбит атомов.

{ ke2/r2 = mV2/r классическая модель

mVr = nћ } – квантовая модель

k = 1/4Piε0 n=1,2,3…

момент импульса кратен ћ

kme2 r3/r2 = mV2m r3/r = m2V2 r2

m2V2 r2 = n2ћ2

kme2 r = n2ћ2

rn = n2ћ2/kme2 - закон квантования

n=1 r1= ћ2/kme2 

r1=(1,05*1,05*10-68)/(9*109*9*10-31*2,56*10-38) = 53*10-12 м

[r]=дж2*с2*Ф/м*кг*кл2 = м

Кл/Ф = В*кл = дж

n2=2  r2=4r1

n3=3 r3=9r1

rn=nr1

Предложенная Э. Резерфордом модель атома сыграла решающую роль в развитии квантовой механики. Дело в том, что на основе классической физики невозможно было объяснить наблюдаемую на опыте устойчивость атома. Вращающиеся на орбите электроны, согласно классической физике, должны были излучать энергию и, потеряв ее, упасть на атомное ядро. Поскольку такие явления как фотоэффект и явление дифракции электронов удалось объяснить с помощью квантовых представлений, вполне разумно казалось попытаться с помощью такого подхода объяснить и устойчивость электронных орбит атома.

В 1913 году Н. Бор предложил новую квантовую теорию орбит. Согласно этой теории электрон может вращаться вокруг ядра неопределенно долго, не излучая энергию, если на его орбите укладывается целое число длин волн де Бройля. Таким образом, устойчивые орбиты в атоме это орбиты, радиусы которых rn определяются соотношением rn = n2h2/Zmee, что соответствует определенным энергетическим уровням атома: En = - Z2e4me/2n2h2.

Импульсная диаграмма и кинематика ядерных реакций

Инженерная графика

 

Сопромат