Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Ядерные реакции

Выходной канал процесса

 

Очевидно, что кинетическая энергия (4.5.12) движения центра инерции не может перейти во внутреннюю энергию частиц и не может быть использована в ядерной реакции.

На этом закончим рассмотрение входного канала процесса (4.1.1) и перейдем к рассмотрению выходного канала.

В ЛСК сумма импульсов частиц b и В, образовавшихся в результате ядерной реакции, по закону сохранения импульса равна импульсу налетающей частицы а:

.

(4.5.13)

На рис. 4.5.2 представлена схема одного из возможных вариантов разлета продуктов реакции, а на рис. 4.5.3 графический аналог векторного уравнения (4.5.13). На этих рисунках θ и φ – углы вылета частиц b и B относительно направления движения частицы а. Очевидно, что отрезок СВ на рис. 4.5.3 равен импульсуна рис. 4.5.2. Остальные величины совпадают с рис. 4.5.2. Поэтому в дальнейшем будем рассматривать векторный треугольник АСВ (рис. 4.5.3).

Так как сумма импульсов переносного движения частиц b и В по закону сохранения импульса должна быть равна импульсу , т.е.

,

(4.5.14)

а отношение

,

(4.5.15)

тоточка О на рис. 4.5.3 делит отрезок АВ = на отрезки АО = и ОВ = в соответствии с (4.5.15).

Очевидно, что ОС =, так как

,

(4.5.16)

а угол  на рис. 4.5.3 - есть угол вылета частицы b в СЦИ.

Вектор , согласно свойствам СЦИ, равен вектору  по абсолютной величине:

,

(4.5.17)

и направлен в противоположную сторону, т.е. частицы b и B в СЦИ разлетаются с равными и противоположными импульсами.

Предложенная Э. Резерфордом модель атома сыграла решающую роль в развитии квантовой механики. Дело в том, что на основе классической физики невозможно было объяснить наблюдаемую на опыте устойчивость атома. Вращающиеся на орбите электроны, согласно классической физике, должны были излучать энергию и, потеряв ее, упасть на атомное ядро. Поскольку такие явления как фотоэффект и явление дифракции электронов удалось объяснить с помощью квантовых представлений, вполне разумно казалось попытаться с помощью такого подхода объяснить и устойчивость электронных орбит атома.

В 1913 году Н. Бор предложил новую квантовую теорию орбит. Согласно этой теории электрон может вращаться вокруг ядра неопределенно долго, не излучая энергию, если на его орбите укладывается целое число длин волн де Бройля. Таким образом, устойчивые орбиты в атоме это орбиты, радиусы которых rn определяются соотношением rn = n2h2/Zmee, что соответствует определенным энергетическим уровням атома: En = - Z2e4me/2n2h2.

Импульсная диаграмма и кинематика ядерных реакций

4)Дисперсия волн де Бройля

Дисперсия – зависимость фазовой скорости от длины волны.

Vф=f(λ)

В вакууме все реальные волны с различными длинами волн распространяются с одинаковой скоростью, те в вакууме нет дисперсии. ε = 1 (в вакууме.)

Среды с ε >  1 диспергируют.

Рассмотрим волны де Бройля:

Vф = ω / k = E/p = (E02 + p2C2)/p = sqr((E02 + p2C2)/p2) = sqr((E0/ p2)+ C2)

λ =h/p => p = h/ λ

Vфаз = sqr((E02 λ2 / h2)+ C2) = f (λ) - не зависит от среды

волн де Бройля наблюдается дисперсия даже в вакууме.

5)Волны де Бройля и второй постулат Бора. (правило квантования орбит)

Le (момент импульса орбит) = mVr = nħ – правило квантования орбит

ħ = h/2Pi , n=1,2,3… ,бесконечность - квантовое число

mVr = nh/2Pi

2PirmV = nh mV=p

2Pirh/ λ = nh

2Pir = n λ

C точки зрения гипотезы де Бройля 2й постулат Бора:

стац. Орбитами электрона в атоме называются такие орбиты на длине которых укладывается целое число волн де бройля.

n=4

Инженерная графика

 

Сопромат