Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Радиоактивные превращения ядер

Анализ Альфа частиц

Вместе с тем при анализе α-частиц в α-спектрометре кроме основной энергетической группы, имеющей наибольшую интенсивность, часто наблюдаются группы α-частиц с меньшими энергиями, причем каждая из групп имеет свое значение энергии. Такой энергетический спектр называется линейчатым (рис. 3.4.1). α-Частицы с меньшей, чем у основной группы, энергией имеют меньший пробег в воздухе и были названы короткопробежными α-частицами. Высота каждой линии определяется относительным выходом η для каждой энергетической группы a-частиц. Относительные выходы короткопробежных α-частиц обычно существенно ниже, так как прозрачность (см. ниже) кулоновского барьера меньше для a-распадовс меньшим значением Тα.

Испускание короткопробежных частиц всегда сопровождается γ-излучением соответствующей энергии, что свидетельствует о возбуждении дочернего ядра. Поскольку процесс a-распада носит статистический характер, то ядра одного и того же сорта могут возникать в разных возбужденных состояниях. Таким образом, в данном a-активном источнике, который содержит огромное  количество ядер, при α-распаде может возникать вполне закономерный дискретный набор энергий α-частиц и возбужденных состояний дочернего ядра. Это поясняет диаграмма на рис. 3.4.2, где показана схема a-распада ядра 235U. Энергия каждого состояния ядра откладывается по условной оси, направленной вверх, и отмечается соответствующей линией, называемой уровнем. Возле каждого уровня при необходимости могут указываться энергия, спин и четность. Условная горизонтальная ось представляет изменение Z ядра. α-Переходы показаны стрелками, идущими сверху вниз налево, и указывают, что энергия и порядковый номер дочернего нуклида становятся меньше материнского, и происходит смещение влево по строке таблицы Менделеева (уменьшается Z). Слева от уровней возбужденного дочернего ядра (в данном случае это ядро 231Th) указаны энергии возбуждения в МэВ, а вертикальными стрелками – γ-переходы. Энергия каждой группы α-частиц определяется с помощью формулы (3.4.9), в которой используется энергия ΔЕ, соответствующая данному возбужденному уровню дочернего ядра 231Th.

В некоторых случаях возникающее в результате предшествующего b-распада a-активное ядро оказывается преимущественно в возбужденном состоянии. Если периоды полураспада таких ядер 10-7 ÷ 10-5с, то небольшая часть ядер может испытать a‑распад раньше, чем переход в основное состояние с испусканием γ‑кванта. При этом к энергии a‑распада (3.4.4) добавляется энергия возбуждения материнского ядра, и появляются a-частицы с кинетической энергией большей, чем для a-частиц из основного состояния. Такие a-частицы носят название длиннопробежных (см. рис.3.4.1). Примерами являются изотопы полония 212Ро и 214Ро, у которых периоды полураспада по отношению испускания α-частиц из основных состояний равны соответственно 3·10-7 и 2·10-4с.

Исследование спектров a-распада совместно с исследованием сопровождающего g‑излучения позволяет построить систему уровней возбужденного ядра.

§3 Опыты Франка и Герца. (1913)

Термо-электронная эмиссия.

Сетка положительно заряжена.

Подается напряжение (- + - +)

Катод-сетка: ускоряющее напряжение в промежуток

Сетка – Анод: наоборот тормозящее напряжение о,5 В

Атом ртути 80 Hg 200

Потенциал ионизации – разность потенциалов которую должен пройти сторонний электрон чтобы при соударении с атомом выбить из него электрон. U эВ

Частота излучения та, с которой колеблется электрон.

Частота вращения = частоте излуч.

Открытие двойственной природы электромагнитного излучения - корпускулярно- волнового дуализма оказало значительное влияние на развитие квантовой физики, объяснение природы материи. В 1924 г. Луи де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Согласно этой гипотезе не только фотоны, но и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами. Соотношения, связывающие корпускулярные и волновые свойства частиц те же, что были установлены ранее для фотонов.

Прямыми опытами, подтверждающими идею корпускулярно- волнового дуализма, были опыты, выполненные в 1927 году К. Дэвиссоном и Л. Джермером по дифракции электронов на монокристалле никеля. Позднее наблюдалась дифракция и других микрочастиц. Метод дифракции частиц в настоящее время широко используется в изучении строения и свойств вещества.

Альфа – распад

Инженерная графика

 

Сопромат