Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Модели атомных ядер

Капельная модель

В основу капельной модели (Вейцзеккер, 1935г., Бор, 1936г.) положено сходство в поведение атомного ядра и заряженной капли жидкости. Ядра имеет достаточно четко определенный радиус R ~ A1/3 (см. формулу (1.5.2)), из чего следует практически одинаковая (не зависящая отА) концентрацию нуклонов в ядрах:

1038см-3,

(2.2.1)

одинаковая плотность ядерного вещества

ρ = mN ·n = 1,66·10-24·1038 ≈ 1014г/см3 = 108т/см3,

(2.2.2)

и одинаковые средние расстояния между нуклонами:

см.

(2.2.3)

Эти цифры говорят о совершенно необычном, прямо-таки потрясающем, с точки зрения макроскопических тел, состоянии ядерного вещества (например, для обычных твердых тел n» 1022см-3 , ρ» 10 г/см3, δ » 5·10-8см).

То, что плотность ядерного вещества всех ядер постоянна, свидетельствует о его несжимаемости. Это свойство сближает ядерное вещество с жидкостью. Постоянство удельной энергии связи нуклонов в ядре углубляет аналогию. Основанием к такому предположению служит, прежде всего, тот факт, что химические силы, действующие между молекулами в жидкости, и ядерные силы, действующие между нуклонами в ядре, являются короткодействующими. Все это позволяет построить капельную модель атомного ядра, согласно которой ядро представляет сферическую каплю заряженной сверхплотной жидкости.

Основным результатом капельной модели является полуэмпирическая формула Вейцзеккера, в которую для получения лучшего согласия с наблюдаемыми величинами пришлось добавить члены, никоем образом не связанные с капельной моделью. Эта формула позволяет с хорошей точностью (< 1 %) вычислять энергию связи ядер по заданным значениямАи Z:

, (2.1.1)

где a1, … a5, и d - постоянные величины. Коэффициенты, a1, … , a5 подбираются таким образом, чтобы получить наилучшее согласие со значениями энергии связи для большинства всех известных ядер. Коэффициент а3 может быть вычислен теоретически (см. ниже). Приведемих величины:

a1= 15,75 МэВ; a2 = 17,8 МэВ; a3 = 0,71 МэВ; a4 = 23,7 МэВ;

a5= 34 МэВ.

Решение волнового уравнения.

2)Плоская монохроматическая волна.

(Фронт волны – плоскость, один цвет, ω=const, A=const)

S=ACos ω(t-(x/V))=ACos(ωt – (2Pix/TV))

ω = 2Pi/T VT= λ 2Pi/ λ = k

S=ACos(ωt –kx)

Смещение от положения равновесия точки с координатой x в момент времени t

3-хмерный случай:

S=ACos(ωt –kr) (k, r - вект)

k – волновой вектор

|k| = 2Pi/ λ

Смещение от положения равновесия точки характеризующейся вектором r в момент времени t

3)Принцип суперпозиции (наложения) волн.

Если в среде распространяется несколько волн, они перемещаются независимо друг от друга.

S = C1S1 + C2S2

S= ∑CnSn

Среда линейная (свойства не меняются под воздействием распространяющихся волн)

Волны взаимно независимы.

Смещение – геометрическая сумма смещений, возникших в отдельных волновых процессах.

4)Волновой пакет

- Суперпозиция волн, мало отличающихся по частоте и занимающая определенный объем в пространстве.

Волновой пакет:

Везде кроме ∆x A=0

Плоская монохроматическая волна – идеализированный объект:

В реальности мы имеем дело с волновыми пакетами.

S1=A0Cos(ωt –kx)

S2= A0Cos((ω+dω)t –(k+dk)x)

dω << ω

dk << k

S = S1 + S2 = 2A0Cos ((dωt – dkx)/2)Cos(ωt –kx)

Здесь 2A0Cos ((dωt – dkx)/2) – амплитуда (зависит от времени и координаты); Cos(ωt –kx) – фаза.

Именно в это время классическая физика оказалась несостоятельной в объяснении новых экспериментальных фактов. Уменьшение временных и пространственных масштабов, в которых разыгрываются физические явления, привели к «новой физике», столь непохожей на привычную традиционную классическую физику. Теория относительности и квантовая теория являются фундаментом, на котором построено описание явлений микромира. Создание А. Эйнштейном в 1905 году теории относительности привело к радикальному пересмотру представлений о свойствах пространства и времени, взглядов на характер электромагнитного поля. Стало ясно, что невозможно создание механических моделей для всех физических явлений.

Представления о квантованности электромагнитного излучения позволили объяснить закономерности фотоэффекта, исследованные экспериментально Г. Герцем и А. Столетовым. На основе квантовой теории А. Комптоном в 1922 году было объяснено явление упругого рассеяния электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны света.

Капельная модель

Инженерная графика

 

Сопромат