Законы постоянного тока электромагнетизм

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинамический метод несколько ограничен: термодинамика ничего не говорит о микроскопическом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования.

Динамика и законы сохранения в механике

1. Футбольный мяч при движении в воздухе испытывает силу сопротивления, пропорциональную квадрату скорости мяча относительно воздуха. Перед ударом футболиста мяч двигался в воздухе горизонтально со скоростью u1 = 20 м/с и ускорением а1 = 13 м/с2. после удара мяч полетел вертикально вверх со скоростью u2 = 10 м/с. Каково ускорение а2 мяча сразу после удара? округлите до целого числа.

Дано:

Решение:

Fc = ku2

u1 = 20 м/с а1 = 13 м/с2

u2 = 10 м/с

а2 = ?

Рассмотрим вначале движение мяча в горизонтальном направлении. Расставим силы, которые действуют на мяч в этом случае. Выполним рисунок. Из рисунка видно, что силу F = ma можно найти по теореме Пифагора.

.

.

Из полученного уравнения выразим коэффициент пропорциональности k:

.

Теперь рассмотрим движение мяча после удара. по условию задачи он полетел вертикально вверх. Сделаем рисунок, расставим силы и запишем уравнение динамики.

.

Выразим отсюда ускорение а2:

.

Подставим полученное выражение для k:

.

(м/с2).

Ответ: а2 = 12 м/с2.

Силы в механике

 Все многообразие встречающихся в природе взаимодействий сводится всего лишь к четырем типам. Это гравитационное, электромагнитное, ядерное (или сильное) и слабое взаимодействие. В механике Ньютона  можно рассматривать только гравитационное и электромагнитное взаимодействия. В отличие от короткодействующих ядерного и слабого взаимодействия, гравитационное и электромагнитное взаимодействия – дальнодействующие: их действия проявляются на очень больших расстояниях.


 

Название силы

Природа взаимодействия

Формула для расчета силы

Зависимость силы от расстояния или относительной скорости

Зависит ли сила от массы взаимодействующих тел

Как направлена сила

Сила тяготения

гравитационная

Является функцией расстояния между взаимодействующими телами

Прямо пропорциональна массам взаимодействующих тел

Вдоль прямой, соединяющей взаимодействующие тела

Сила упругости

электромагнитная

Является функцией расстояния (зависит от деформации)

Не зависит

Противоположно направлению перемещения частиц при деформации

Сила трения

сухого

жидкого

электромагнитная

 

Является функцией скорости относительного движения

Не зависит

Противоположно направлению вектора скорости

С какой наименьшей скоростью следует бросить с уровня Земли камень, чтобы он смог перелететь через вертикальную стену высотой 20 м и шириной 10  м? Сопротивлением воздуха пренебречь. Принять g = 10 м/с2. Округлите до десятых.

Работа, затраченная на толкание ядра, брошенного под углом 15° к горизонту, равна 800 Дж. Масса ядра 8 кг. На каком расстоянии от места бросания ядро упадет на Землю? Принять g = 10 м/с2.

Конькобежец массой 45 кг, находящийся в начале ледяной горки с углом наклона 10°, бросает в горизонтальном, противоположном от горки направлении, камень массой 5 кг со скоростью 18 м/с. На какое расстояние вдоль горки поднимется конькобежец, если известно, что коэффициент трения лезвий коньков о лед равен 0,02? Принять g = 10 м/с2. Ответ округлите до целого числа.

На внутренней поверхности сферы радиусом 0,1 м, вращающейся вокруг вертикальной оси, находится небольшой предмет. С какой постоянной частотой должна вращаться сфера, чтобы предмет находился в точке, направление на которую составляет угол 45°? Коэффициент трения между предметом и поверхностью сферы равен 0,2. Округлите до сотых. Принять g = 10 м/c2.

На сколько следует приподнять наружный рельс по отношению к внутреннему на закруглении пути при скорости движения поезда 54 км/ч и радиусе кривизны 300 м? Ширина пути 1,524 м. Принять g = 10 м/c2. Ответ представьте в сантиметрах и округлите до десятых.

Через невесомый блок перекинута невесомая и нерастяжимая нить, к концам которой подвешены грузы массами 1 кг и 2 кг. На второй из грузов положен перегрузок массой 0,5 кг. С какой силой будет действовать этот перегрузок на тело, на котором он лежит, если вся система придет в движение? Принять g = 9,8 м/с2.

К грузу массой 7 кг подвешен на веревке груз массой 5 кг. Определите модуль силы натяжения середины веревки, если всю систему поднимать вертикально с силой 240 Н, приложенной к большему грузу. Веревка однородна и ее масса равна 4 кг. Принять g = 10 м/с2.

Орудие, имеющее массу ствола 500 кг, стреляет в горизонтальном направлении. Масса снаряда 5 кг, его начальная скорость 460 м/с. После выстрела ствол откатывается на 40 см. Определите среднее значение силы торможения, возникающей в противооткатном устройстве. Ответ представьте в килоньютонах и округлите до десятых.

Тело массой 8 кг начинает с трением скользить с вершины наклонной плоскости высотой 4,9 м с углом наклона 60°. У основания наклонной плоскости стоит тележка с песком массой 90 кг. С какой скоростью начинает двигаться тележка, когда тело упадет на нее? Коэффициент трения 0,1. Ускорение свободного падения 10 м/с2. Округлите до десятых.

Два тела, массы которых одинаковы, движутся навстречу друг другу, при этом скорость одного тела в 2 раза больше скорости второго. Какая часть механической энергии системы перейдет во внутреннюю энергию при центральном абсолютно неупругом ударе?

Пуля ударяет со скоростью 400 м/с в центр шара, подвешенного на нити длиной 4 м, и застревает в нем. Определите косинус угла, на который отклоняется нить, если масса пули 20 г, масса шара 5 кг. Принять g = 10 м/с2. Ответ округлите до сотых.

Из двух соударяющихся абсолютно упругих шаров шар большей массы до удара покоился. В результате прямого удара меньший шар потерял 3/4 своей кинетической энергии. Во сколько раз масса одного шара больше массы второго шара?

Термодинамика имеет дело с термодинамической системой — совокупностью макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинамического метода — определение состояния термодинамической системы. Состояние системы задается термодинамическими параметрами (параметрами состояния) — совокупностью физических величин, характеризующих свойства термодинамической системы. Обычно в качестве параметров состояния выбирают температуру, давление и удельный объем.
Методика решения задач по Электростатике