Испытание на сжатие образцов Определение деформаций при косом изгибе Лабораторные работы по сопромату Испытание материалов на выносливость Проверка теории изгибающего удара Расчет на прочность и жесткость Метод сечений

Лабораторные работы по сопромату

Производство цветных металлов

Производство меди

Медь в природе находится в виде сернистых соединений 3_files/image008.gif, оксидов 3_files/image009.gif, гидрокарбонатов 3_files/image010.gif, углекислых соединений 3_files/image011.gifв составе сульфидных руд и самородной металлической меди.

Наиболее распространенные руды – медный колчедан и медный блеск, содержащие 1…2 % меди.

90 % первичной меди получают пирометаллургическим способом, 10 % - гидрометаллургическим.

Гидрометаллургический способ – получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора.

Получение меди пирометаллургическим способом состоит из обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Обогащение медных руд производится методом флотации и окислительного обжига.

Метод флотации основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы. Позволяет получать медный концентрат, содержащий 10…35 % меди.

Медные руды и концентраты, содержащие большие количества серы, подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700…800 0C в присутствии кислорода воздуха сульфиды окисляются и содержание серы снижается почти вдвое против исходного. Обжигают только бедные (с содержанием меди 8…25 %) концентраты, а богатые (25…35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа 3_files/image012.gif. Штейн содержит 20…50 % меди, 20…40 % железа, 22…25 % серы, около 8 % кислорода и примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 0C.

Полученный медный штейн, с целью окисления сульфидов и железа, подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак, а серу – в 3_files/image013.gif3_files/image014.gif. Тепло в конвертере выделяется за счёт протекания химических реакций без подачи топлива. Температура в конвертере составляет 1200…1300?C. Таким образом, в конвертере получают черновую медь, содержащую 98,4…99,4 % меди, 0,01…0,04 % железа, 0,02…0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Черновую медь рафинируют для удаления вредных примесей, проводят огневое, а затем электролитическое рафинирование.

Сущность огневого рафинирования черновой меди заключается в окислении примесей, имеющих большее сродство к кислороду, чем медь, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99…99,5%. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой от примесей меди (99,95% 3_files/image015.gif).

Электролиз проводят в ваннах, где анод изготавливают из меди огневого рафинирования, а катод – из тонких листов чистой меди. Электролитом служит водный раствор 3_files/image016.gif(10…16%) и 3_files/image017.gif(10…16%).

При пропускании постоянного тока анод растворяется, медь переходит в раствор, а на катодах разряжаются ионы меди, осаждаясь на них слоем чистой меди.

Примеси осаждаются на дно ванны в виде шлака, который идёт на переработку с целью извлечения металлов.

Катоды выгружают через 5…12 дней, когда их масса достигнет 60…90 кг. Их тщательно промывают, а затем переплавляют в электропечах.

Медь по чистоте подразделяется на марки: М0 (99,95% Cu), М1 (99,9%), М2(99,7%), М3 (99,5%), М4 (99%).

Производство магния

Для получения магния наибольшее распространение получил электролитический способ, сущность которого заключается в получении чистых безводных солей магния, электролизе этих солей в расплавленном состоянии и рафинировании металлического магния.

Основным сырьем для получения магния являются: карналлит, магнезит, доломит, бишофит. Наибольшее количество магния получают из карналлита. Сначала карналлит обогащают и обезвоживают. Безводный карналлит используют для приготовления электролита.

Электролиз осуществляют в электролизере, футерованном шамотным кирпичом. Анодами служат графитовые пластины, а катодами – стальные пластины. Электролизер заполняют расплавленным электролитом состава 10 % 3_files/image018.gif, 45 % 3_files/image019.gif, 30 % 3_files/image020.gif, 15 % 3_files/image021.gif, с небольшими добавками 3_files/image022.gifи 3_files/image023.gif. Такой состав электролита необходим для понижения температуры его плавления (720 0С). Для электролитического разложения хлористого магния через электролит пропускают ток. В результате образуются ионы хлора, которые движутся к аноду. Ионы магния движутся к катоду и после разряда выделяются на поверхности, образуя капельки жидкого чернового магния. Магний имеет меньшую плотность, чем электролит, поэтому он всплывает на поверхность, откуда его периодически удаляют вакуумным ковшом.

Черновой магний содержит 5 % примесей, поэтому его рафинируют переплавкой с флюсами. Для этого черновой магний и флюс, состоящий из 3_files/image024.gif, нагревают в печи до температуры 700…750 0С и перемешивают. При этом неметаллические примеси переходят в шлак. Затем печь охлаждают до температуры 670 0С и магний разливают в изложницы на чушки.

Определение температуры размягчения битума

Температура размягчения битума является условной характеристикой перехода битума из полутвердого в текучее состояние. Чем выше температура размягчения, тем больше прочность пленки битума.

Для определения температуры размягчения используют прибор "кольцо - шар" (рис. 28).

 Предварительно расплавленный битум заливают с некоторым избытком в два латунных кольца с внутренним диаметром 17,7 мм. После охлаждения избыток битума срезают нагретым ножом вровень с краями колец. Кольца с битумом устанавливают в отверстия среднего диска прибора, помещают прибор в химический стакан, наполненный водой. На каждое кольцо пинцетом устанавливается стальной шарик (диаметром 9,5 мм, массой 3,5 г). Если температура размягчения 80...110 °С, то стакан заполняют смесью воды и глицерина, если более 110 °С - то глицерином.

Жидкость в стакане подогревают на электроплитке так, чтобы скорость подъема температуры составляла 5 °С в минуту. Температура, при которой битум под действием шарика коснется нижнего контрольного диска подставки прибора, соответствует температуре размягчения битума.

За показатель температуры размягчения принимают среднее арифметическое по результатам 2-х определений.

8.3.3. Определение растяжимости битума

Показателем растяжимости является абсолютное удлинение стандартного образца "восьмерки" (рис. 29 а) до момента его разрыва. Для определения растяжимости применяют прибор дуктилометр (рис. 29 б).

Расплавленный и обезвоженный битум наливают в три предварительно смазанные техническим вазелином формы - "восьмерки". Охлаждают битум в формах 30...40 мин до окружающей температуры не ниже + 18°С. После этого излишек битума срезают нагретым ножом вровень с краями форм. Образцы  помещают затем в ванну дуктилометра с водой, имеющей температуру 25 °С. Высота воды над слоем битума должна составлять 25 мм. Через час выдержки в воде образцы устанавливают в проушины дуктилометра, включают двигатель дуктилометра и производят растяжение битума со скоростью 5 см/мин. Образцы растягивают до наступления разрыва битума. В момент разрыва снимают отсчет по линейке в сантиметрах. Показатель растяжимости  определяют как среднее арифметическое результатов испытаний трех образцов-"восьмерок".


Показатель растяжимости битума влияет на устойчивость битума к старению и его когезионную прочность.

  Приборы, инструменты,  материалы:  представительная проба нетяного вязкого битума, ручной пенетрометр, металлическая чашка цилиндрической формы для заливки обезвоженного и расплавленного битума, секундомер, прибор "Кольцо и шар", два латунных кольца, спиртовой термометр на 100 °С, электроплитка с закрытой спиралью, дуктилометр, три латунные формы-"восьмерки", две металлические пластинки.

Аттестационные вопросы

Что представляют собой битумы?

Как подразделяются битумы по назначению?

По каким показателям определяют марку битума в

производственных условиях?

Для каких целей используют битум в строительстве?

Опишите  методику определения глубины проникания иглы

 (пенетрации) при определении условной вязкости битума.

6. Как определяется температура размягчения битума на

приборе "кольцо - шар"?

7. Что является показателем растяжимости битума и его определение?


Содержание и задачи курса сопротивление материалов