Испытание на сжатие образцов Определение деформаций при косом изгибе Лабораторные работы по сопромату Испытание материалов на выносливость Проверка теории изгибающего удара Расчет на прочность и жесткость Метод сечений

Лабораторные работы по сопромату

 Механизм мартенситного превращения имеет ряд особенностей.

1. Бездиффузионный характер.

Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа.

2. Ориентированность кристаллов мартенсита.

Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60 o или 120 o, их размеры ограничены участками между первыми пластинами (рис. 13.2).

13_files/image007.gif

Рис. 13.2. Ориентированность кристаллов мартенсита 

Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При достижении определенной величины кристаллов мартенсита, эти напряжения становятся равными пределу текучести аустенита. В результате этого нарушается когерентность и происходит отрыв решетки мартенсита от решетки аустенита. Рост кристаллов прекращается.

3. Очень высокая скорость роста кристалла, до 1000 м/с.

4. Мартенситное превращение происходит только при непрерывном охлаждении. Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой МН, а температуру окончания превращения – МК. Температуры МН и МК зависят от содержания углерода и не зависят от скорости охлаждения. Для сталей с содержанием углерода выше 0,6 % МК уходит в область отрицательных температур (рис.13.3)

13_files/image008.gif

Рис. 13.3. Зависимость температур начала (МН) и конца (МК)мартенситного превращения от содержания углерода в стали

Мартенситное превращение чувствительно к напряжениям, и деформация аустенита может вызвать превращение даже при температурах выше МН.

В сталях с МК ниже 20oС присутствует аустенит остаточный, его количество тем больше, чем ниже МН и МК.(при содержании углерода 0,6…1,0 % количество аустенита остаточного – 10 %, при содержании углерода 1,5 % - до 50 %). В микроструктуре наблюдается в виде светлых полей между иглами мартенсита.

5. Превращение необратимое. Получить аустенит из мартенсита невозможно.

Свойства мартенсита обусловлены особенностями его образования. Он характеризуется высокой твердостью и низкой пластичностью, что обуславливает хрупкость.

Твердость составляет до 65 HRC, что равно НВ 600. Высокая твердость вызвана влиянием внедренных атомов углерода в решетку 13_files/image009.gif-фазы, что вызывает ее искажение и возникновение напряжений. С повышением содержания углерода в стали возрастает склонность к хрупкому разрушению.

При  термической обработке (закалке) могут возникнуть такие дефекты термической обработки,  как коробление и трещины.

Коробление и трещины являются следствием больших  внутренних напряжений, возникающих из-за неравномерного нагрева и охлаждения,  изменения объёма при закалке, неправильного ведения процесса закалки. Для предупреждения  этих дефектов детали не должны иметь резких выступов, острых углов, резких переходов;  охлаждение в интервале мартенситного превращения должно быть замедленным. Хорошие  результаты даёт прерывистая и ступенчатая закалка. Трещины являются неисправимым  дефектом. При короблении детали правят или при наличии достаточного припуска шлифуют.  Для тонких деталей применяют закалочные прессы.

Превращение мартенсита в перлит.

Имеет место при нагреве закаленных сталей. Превращение связано с диффузией углерода.

Мартенсит закалки неравновесная структура, сохраняющаяся при низких температурах. Для получения равновесной структуры изделия подвергают отпуску.

При нагреве закаленной стали происходят следующие процессы.

При нагреве до 200oС происходит перераспределение углерода в мартенсите. Образуются пластинки 13_files/image010.gif– карбидов толщиной несколько атомных диаметров. На образование карбидов углерод расходуется только из участков мартенсита, окружающих кристаллы выделившихся карбидов. Концентрация углерода на этих участках резко падает, тогда, как удаленные участки сохраняют концентрацию углерода. В стали присутствуют карбиды и два 13_files/image011.gif-твердых раствора мартенсита (с высокой и низкой концентрацией углерода. Такой тип распада мартенсита называется прерывистым. Скорость диффузии мала, карбиды не увеличиваются, распад мартенсита сопровождается зарождением новых карбидных частиц. Таким образом, имеем структуру с неравномерным распределением углерода – это мартенсит отпуска. При этом несколько снижается тетрагональность решетки.

При нагреве до 300oС идет рост образовавшихся карбидов. Карбиды выделяются из мартенсита и он обедняется углеродом. Диффузия углерода увеличивается и карбиды растут в результате притока углерода из областей твердого раствора с высокой его концентрацией. Кристаллическая решетка карбидов когерентно связана с решеткой мартенсита.

В высокоуглеродистых сталях аустенит остаточный превращается в мартенсит отпуска. Наблюдается снижение тетрагональности решетки и внутренних напряжений. Структура – мартенсит отпуска:

При нагреве до 400oС весь избыточный углерод выделяется из 13_files/image012.gif. Карбидные частицы полностью обособляются, приобретают строение цементита, и начинают расти. Форма карбидных частиц приближается к сферической.

Высокодисперсная смесь феррита и цементита называется троостит отпуска;

При нагреве выше 400oС изменение фазового состава не происходит, изменяется только микроструктура. Имеет место рост и сфероидизация цементита. Наблюдается растворение мелких и рост крупных карбидных частиц.

При температуре 550…600oС имеем сорбит отпуска. Карбиды имеют зернистое строение. Улучшаются свойства стали.

При температуре 650…700oС получают более грубую ферритно- цементитную смесь – перлит отпуска (зернистый перлит).

5. Технологические возможности и особенности отжига, нормализации, закалки и отпуска

При разработке технологии необходимо установить:

режим нагрева деталей (температуру и время нагрева);

характер среды, где осуществляется нагрев, и ее влияние на материал стали;

условия охлаждения.

Режимы термической обработки назначают в соответствии с диаграммами состояния и диаграммой изотермического распада аустенита.

Нагрев может осуществляться в нагревательных печах, топливных или электрических, в соляных ваннах или в ваннах с расплавленным металлом, пропусканием через изделие электрического тока или в результате индукционного нагрева.

С точки зрения производительности, нагрев с максимальной скоростью уменьшает окалинообразование, обезуглероживание и рост аустенитного зерна. Однако необходимо учитывать перепад температур по сечению, что ведет к возникновению термических напряжений. Если растягивающие напряжения превысят предел прочности или предел текучести, то возможно коробление или образование трещин.

13_files/image013.gif

Рис. 13. 4. Левый угол диаграммы состояния железо – цементит и температурные области нагрева при термической обработке сталей

Скорость нагрева тем выше, чем менее легирована сталь, однороднее ее структура, проще конфигурация.

Скорость нагрева принимается 0,8…1 мин на 1 мм сечения. Время выдержки принимается около 20 % от времени нагрева.

Среда нагрева при нагреве в печи с газовой средой.

Составляющие могут оказывать на сталь различное действие:

окисляющее (О2, СО2, Н2О);

восстанавливающее (СО, СН4);

обезуглероживающее (О2, Н2);

науглероживающее (СО, СН4);

нейтральное (N2, инертные газы).

Окисление с образованием окалины 13_files/image014.gif, препятствует получению высокой и равномерной твердости при закалке, приводит к изменению размеров, требует увеличения припусков на механическую обработку.

Обезуглероживание (выгорание углерода в поверхностном слое металла) способствует появлению мягких пятен при закалке и возникновению растягивающих напряжений в поверхностном слое, снижающих усталостную прочность.

На рис. 13.4 показаны температурные области нагрева при термической обработке сталей.

Отжиг и нормализация. Назначение и режимы

Отжиг, снижая твердость и повышая пластичность и вязкость за счет получения равновесной мелкозернистой структуры, позволяет:

улучшить обрабатываемость заготовок давлением и резанием;

исправить структуру сварных швов, перегретой при обработке давлением и литье стали;

подготовить структуру к последующей термической обработке.

Характерно медленное охлаждение со скоростью 30…100oС/ч.

Отжиг первого рода.

1. Диффузионный (гомогенизирующий) отжиг. Применяется для устранения ликвации, выравнивания химического состава сплава.

В его основе – диффузия. В результате нагрева выравнивается состав, растворяются избыточные карбиды. Применяется, в основном, для легированных сталей.

Температура нагрева зависит от температуры плавления, ТН = 0,8 Тпл.

Продолжительность выдержки: 13_files/image015.gifчасов.

2. Рекристаллизационный отжиг проводится для снятия напряжений после холодной пластической деформации.

Температура нагрева связана с температурой плавления: ТН = 0,4 Тпл.

Продолжительность зависит от габаритов изделия.

3. Отжиг для снятия напряжений после горячей обработки (литья, сварки, обработки резанием, когда требуется высокая точность размеров).

Температура нагрева выбирается в зависимости от назначения, находится в широком диапазоне: ТН = 160……700oС.

Продолжительность зависит от габаритов изделия.

Детали прецизионных станков (ходовые винты, высоконагруженные зубчатые колеса, червяки) отжигают после основной механической обработки при температуре 570…600oС в течение 2…3 часов, а после окончательной механической обработки, для снятия шлифовочных напряжений – при температуре 160…180oС в течение 2…2,5 часов.

ЛАБОРАТОРНАЯ РАБОТА № 4

4. ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ДРЕВЕСИНЫ

4.1. Общие сведения

Механические свойства характеризуют способность древесины сопротивляться воздействию внешних сил (нагрузок).

К механическим свойствам древесины относятся: прочность, твердость, жесткость, ударная вязкость. На механические свойства древесины оказывают влияние влажность, продолжительность действия нагрузок, направление волокон, форма образца. Прочность древесины не одинакова в различных направлениях вследствие особенностей строения древесины, это необходимо учитывать при расчете строительных конструкций из древесины.

Цель работы

Изучение методов определения механических свойств древесины.

4.3. Порядок выполнения работы

4.3.1. Определение предела прочности при сжатии вдоль волокон

Изготавливают образцы (3 шт) в форме прямоугольной призмы сечением 20×20 мм и длиной вдоль волокон 30 мм. Обмеряют по осям симметрии размеры их сечений и вычисляют площадь. Затем поочередно образцы ставят на опорную плиту пресса и испытывают до разрушения (рис.15).

Подпись: Рис.15. Определение прочности при сжатии  Предел прочности при сжатии вдоль волокон при влажности w (%) вычисляют по формуле:

  , МПа (кгс/см2) (41)

где Pmax - разрушающая нагрузка, Н (кгс);

 F - площадь поперечного сечения образца, м2 (см2).

Пересчет на стандартную влажность (12%) осуществляют по формуле:

  (42)

где α - поправочный коэффициент, равный 0,04 на 1 % влажности;

  W - влажность образца в момент испытания, %.

Результаты испытания оформляются в виде табл. 21.

Таблица 21

Определения прочности древесины при сжатии вдоль волокон

Порода

древесины

Номер

образца

Размеры поперечного сечения образца, см

Pmax , Н , (кгс)

W, %

, МПа

, МПа

Толщина, а

Ширина, b

Полученные средние результаты сравниваются со справочными данными. В среднем предел прочности при сжатии вдоль волокон для всех пород составляет около 50 МПа.

4.3.2. Определение предела прочности при статическом изгибе

Изготавливают образцы (3 шт) в форме прямоугольной призмы сечением 20×20 мм и длиной вдоль волокон 300 мм. Поперечное сечение измеряют по середине длины образца с точностью до 0,1 мм, определяя ширину "b" в радиальном направлении, а высоту "h" - в тангенциальном.

Для испытания  (рис. 16) образец укладывают на две опоры, расстояние между центрами которых 240 мм. Расстояние между центрами верхних опор - 80 мм. Нагружение образца осуществляют со скоростью 70  15 Н/мин.

Предел прочности при статическом изгибе при влажности (W) вычисляют по формуле:

  , МПа (кгс/см2) (43)

где Pmax - разрушающая нагрузка, Н ( кгс );

  ℓ - расстояние между опорами, м ( см );

 b , h - ширина и высота сечения образца, м ( см ).

 Полученные значения приводят к стандартной влажности 12 % по формуле:

  (44)

где a - поправочный коэффициент, равный 0,04 для всех пород;

  W - влажность образца в момент испытания, %.

Результаты испытаний заносят в табл. 22

Таблица 22 

Определения прочности древесины при статическом изгибе.

Порода древесины

Номер образца

Размеры поперечного сечения образца, м (см)

Максимальная нагрузка, Pmax , Н , (кгс) 

Влажность, W, %

Предел прочности при при статическом изгибе, МПа

высота, h

Ширина, b

Полученные средние результаты сравниваются со справочными данными (табл. 24).

В среднем для всех пород прочность при изгибе составляет 100 МПа, т.е. в два раза больше предела прочности при сжатии.


Содержание и задачи курса сопротивление материалов