Курсовые
Черчение

Теплоэнергетика

Электротехника
Карта

Реактор БН 600 Атомная станция с реакторами на быстрых нейтронах

Безопасность реакторной установки

     

Проектирование энергоблока с реактором БН-600 производилось исходя из условия, чтобы радиационное воздействие на персонал, население и окружающую среду при нормальной эксплуатации и проектных авариях не приводило к превышению установленных доз облучения персонала и населения и нормативов по выбросам и содержанию радиоактивных веществ в окружающей среде, а также исходя из условия ограничения этого воздействия при запроектных авариях.

      Общий подход, который лежит в основе технологии безопасности энергоблока с реактором БН600, заключался в применении принципа глубоко эшелонированной защиты в виде системы барьеров на пути распространения ионизирующих излучений и радиоактивных веществ в окружающую среду и реализации системы технических и организационных мер по защите и сохранению эффективности этих барьеров. Как и во всех типах реакторов на энергоблоке с реактором БН-600 в качестве первого, второго и третьего барьеров рассматриваются матрица топлива, герметичная и прочная оболочка твэл и корпус реактора Отличительной особенностью в условиях работы корпуса реактора является отсутствие каких-либо значительных повреждающих факторов он не подвергается действию высокого давления, коррозионного воздействия и большого облучения нейтронами Четвертым барьером является страховочный корпус реактора, страховочные кожухи вспомогательных трубопроводов 1 контура и герметичные помещения 1 контура.

Основными решениями обеспечения защиты и сохранения эффективности барьеров являлись:

выбор благоприятной площадки с невысокой сейсмичностью в соответствии с требованиями нормативных документов;

использование и развитие внутренне присущих реактору на быстрых нейтронах свойств безопасности и его самозащиты за счет пассивных средств, отрицательных во всех режимах эффектов реактивности, низкой избыточной реактивности, отсутствия локальных критичностей, способности СУЗ обеспечивать приведение реактора в подкритическое состояние и поддержание его в этом состоянии во всех режимах, простоты в управлении реактором, интегральной компоновки реактора, высокой тепловой инерции 1 и 2 контуров и осуществимости режимов естественной циркуляции теплоносителя в них;

обеспечение требуемого качества систем, важных для безопасности, на всех этапах жизненного цикла энергоблока;

применение систем безопасности, построенных на основе принципов резервирования, независимости, единичного отказа;

применение средств диагностирования дефектов оборудования и отклонений режима их работы от нормального.

Основными принципами обеспечения безопасности в ходе эксплуатации энергоблока N 3 с реактором БН-600 являются:

эксплуатация энергоблока в соответствии с нормативно-технической документацией по обоснованным эксплуатационным регламентам и инструкциям;

поддержание в исправном состоянии систем и оборудования, важных для безопасности, путем проведения на них планово-предупредительных ремонтов, технического обслуживания и замены выработавшего ресурс оборудования;

организация эффективно действующей системы документирования результатов работ и контроля;

разработка организационно-технических мероприятий, направленных на предотвращение перерастания исходных событий в проектные аварии, а проектных аварий - в запроектные, а также направленных на ограничение и ликвидацию аварий, защиту локализующих систем безопасности от разрушения при запроектных авариях;

разработка плана мероприятий по защите персонала и плана мероприятий по защите населения в случае возникновения запроектных аварий;

подготовка эксплуатационного персонала для действий в нормальных и аварийных условиях, поддержание его квалификации и дисциплины на должном уровне, формирование у персонала культуры безопасности, когда для каждого работника станции обеспечение безопасности является приоритетной целью и внутренней потребностью при выполнении работ, влияющих на безопасность. Признавая за персоналом право на ошибку, администрация станции устанавливает такой контроль за проведением таких работ, который может считаться избыточным с точки зрения производственной деятельности обычных предприятий.

Пересмотр Технического обоснования безопасности БН-600 в соответствии с современными нормативными документами, разработка Программы обеспечения качества, получение Лицензии на эксплуатацию БН-600 с соответствующими Условиями и целого пакета других лицензий, регламентирующих виды деятельности - все это составляющие безопасной эксплуатации Белоярской АЭС.

Реактор на быстрых нейтронах очень сильно отличается от реакторов всех остальных типов. Его основное назначение - обеспечение расширенного воспроизводства делящегося плутония из урана-238 с целью сжигания всего или значительной части природного урана, а также имеющихся запасов обедненного урана. При развитии энергетики реакторов на быстрых нейтронах может быть решена задача самообеспечения ядерной энергетики топливом. В настоящее время реакторы на быстрых нейтронах широкого распространения не получили, в основном из-за сложности конструкции и проблемы получения достаточно устойчивых материалов для конструкционных деталей. В России имеется только один реактор такого типа (на Белоярской АЭС), однако, считается, что такие реакторы имеют большое будущее. Прежде всего, в реакторе на быстрых нейтронах нет замедлителя. В связи с этим в качестве топлива используется не уран-235, а плутоний и уран-238, которые могут делиться от быстрых нейтронов. Плутоний необходим для обеспечения достаточной плотности нейтронного потока, которую не может обеспечить один уран-238. Тепловыделение реактора на быстрых нейтронах в десять-пятнадцать раз превосходит тепловыделение реакторов на медленных нейтронах, в связи с чем вместо воды (которая просто не справится с таким объемом энергии для передачи) используется жидкий металл. Одно из преимуществ жидкометаллического теплоносителя заключается в возможности работать при низких давлениях в первом контуре. Кроме того, высокий коэффициент теплоотдачи от оболочки тепловыделяющих элементов к теплоносителю позволяет при той же температуре оболочки получать более высокие температуры теплоносителя. Реакторы с жидкометаллическим теплоносителем на быстрых нейтронах разработаны в США, Франции, Великобритании, Германии, Японии и России. Однако широкого распространения в мире быстрые реакторы не получили. Стимулами, активизирующими разработку и строительство быстрых реакторов, является высокий уровень их естественной безопасности, возможность использования для расширенного воспроизводства ядерного топлива, утилизации плутония и выжигания младших актиноидов - нептуния, америция и кюрия [4]. Быстрые реакторы превосходят реакторы ВЭР по топливной и энергетической эффективности. В них достигается более эффективное использование оксидного топлива: в реакторе БН-600 (Россия) до 12% по тяжелым атомам (отношение массы продуктов деления к массе тяжелых атомов); в реакторах Феникс (Франция) и FR (Великобритания) - до 20%; в экспериментальных реакторах США - до 18%, в то время как тепловых реакторах эффективность использования топлива составляет не более 1%. Утилизация плутония в быстрых реакторах совместима с выжиганием актиноидов, а также накоплением в ториевых зонах воспроизводства 233U. Эффективное использование плутония в быстрых реакторах будет способствовать экономии обогащенного урана в ядерной энергетике.

Безопасность реакторной установки

Атомные станции с реакторами РБМК 1000