Реактор БН 600 Атомная станция с реакторами на быстрых нейтронах

Тепловая схема энергоблока

БН-600 - реактор на быстрых нейтронах с электрической мощностью 600 МВт.

Корпусной реактор - размножитель с интегральной компоновкой оборудования.

Конструкция реактора на быстрых нейтронах БН-600

1-Шахта; 2-Корпус; 3-Главный циркуляционный насос 1 контура; 4-Электродвигатель насоса; 5-Большая поворотная пробка; 6-Радиационная защита; 7-Теплообменник "натрий-натрий"; 8-Центральная поворотная колонна с механизмами СУЗ; 9-Активная зона.

Ядерный реактор БН-600 выполнен с "интегральной" компоновкой оборудования, при которой активная зона и оборудование первого контура (главные циркуляционные насосы и промежуточные теплообменники) размещены в корпусе реактора.

Корпус реактора представляет собой бак цилиндрической формы с эллиптическим днищем и конической верхней крышкой, выполненной с одиннадцатью горловинами - для поворотной пробки, насосов первого контура, промежуточных теплообменников, элеваторов системы перегрузки тепловыделяющих сборок(ТВС). Цилиндрическая часть корпуса соединена с днищем путем сварки через переходное опорное кольцо, на котором установлен опорный пояс, являющийся основой несущей конструкции внутри корпуса реактора; он образует системой радиальных ребер три сливные камеры для натрия, выходящего из теплообменников.

      На опорном поясе смонтировано все внутрикорпусное оборудование напорная камера с ТВС активной зоны, зоны воспроизводства и внутреннего хранилища ТВС, первичная радиационная защита, промежуточные теплообменники, главные циркуляционные насосы первого контура. Нагрузка от массы реактора через опорное кольцо передается на катковые опоры, которые опираются на фундаментную плиту.
      В центре верхней части реактора смонтировано поворотное устройство, состоящее из большой и малой поворотной пробок, эксцентрических друг относительно друга; на малой поворотной пробке смонтирована колонна СУЗ, в которой расположены исполнительные механизмы систем: управления и защиты, перегрузки ТВС, внутриреакторного контроля.
      Реактор размещен в бетонной шахте диаметром 15 м. Конструкционный материал реактора - нержавеющая сталь марки Х18Н9 В центре верхней части реактора смонтировано поворотное устройство, состоящее из большой и малой поворотных пробок, эксцентричных друг относительно друга, на малой поворотной пробке смонтирована колонна СУЗ, несущая исполнительные механизмы систем управления и защиты, перегрузки ТВС, контроля активной зоны.

      Для компенсации температурных удлинений насосов первого контура и промежуточных теплообменников относительно корпуса реактора использованы компенсаторы приваренные к горловине корпуса реактора Корпус реактора заключен в страховочный кожух, исключающий возможность вытекания натрия из реактора даже при разрывах его корпуса.

      Активная зона и зона воспроизводства собираются из шестигранных ТВС кассетного типа с размерами "под ключ" 96 мм. Тепловыделяющая сборка состоит из твэлов, кожуха, головки для захвата ТВС при перегрузках и хвостовика, с помощью которого ТВС устанавливается в гнездо напорного коллектора и поддерживается вертикально. В хвостовике ТВС и в напорном коллекторе выполнены дроссельные устройства, обеспечивающие требуемое распределение расхода теплоносителя через ТВС, в соответствии с тепловыделением в них. Твэлы соединены между собой элементами крепления и ограждены чехлом, связывающим в единое целое все части ТВС. Твэлы заполнены по длине активной зоны втулками из обогащенной окиси урана (или смеси окиси урана) и окиси плутония, а выше и ниже активной зоны расположены торцевые экраны из брикетов окиси"отвального" урана. Твэлы зоны воспроизводства заполнены брикетами из "отвального" урана. Газовые полости над уровнем натрия в реакторе заполнены аргоном.

Тепловая схема энергоблока на быстрых нейтронах БН 600

1-Реактор; 2-Главный циркуляционный насос 1 контура; 3-Промежуточный теплообменник; 4-Тепловыделяющие сборки; 5-Парогенератор; 6-Буферная и сборная емкости; 7-Главный циркуляционный насос 2 контура; 8-Турбоустановка; 9-Генератор; 10-Трансформатор; 11-Конденсаторы; 12-Циркуляционные насосы; 13-Конденсатные насосы; 14-Подогреватели; 15-Деаэратор; 16-Питательные насосы; 17-Пруд-охладитель; 18-Отпуск электроэнергии потребителю;

Энергетика - острейшая проблема цивилизации. Уже сегодня энергетические проблемы определяют пути развития экономики, и самые светлые умы бьются над тем, как в будущем, когда энергопотребление неизбежно и неимоверно возрастет, избавить человечество от энергетического голода. Анализ идей радиоактивности в плане их возможных применений в сфере энергетики показывает, что, запасенную ядерную энергию можно конвертировать в тепловую и электрическую в процессах : - радиоактивного распада, - аннигиляции вещества с антивеществом, - ядерных реакциях деления тяжелых ядер (под действием тепловых и/или быстрых нейтронов), - в ядерных реакциях синтеза легких ядер (в первую очередь - изотопов водорода). Однако в настоящее время в энергетике реализован только один класс ядерных процессов - деление ядер тяжелых элементов под действием нейтронов. Теоретически возможны более 100 разных типов реакторов, различающихся топливом, замедлителем и теплоносителями, например: " реакторы на быстрых нейтронах, т.е. реакторы, не использующие замедлители; охлаждаемые теплоносителем, не находящимся под давлением, например реакторы бассейного типа; " реакторы на тепловых нейтронах; " гетерогенные реакторы, т.е. реакторы с разделенным ядерным топливом и замедлителем; " реакторы насыпного типа; " реакторы с гранулированным топливом, с замедлителем, находящимся под высоким давлением, например, реакторы с кипящей водой; " реакторы с общим перегревом; " реакторы, охлаждаемые водой под давлением, с различными и (или) разделенными замедлителем и теплоносителем, с твердым замедлителем, например, реакторы Магнокса; " с замедлителем, не находящимся под давлением, например реакторы бассейнового типа; " с различными и (или) разделенными замедлителем и теплоносителем, например натрий-графитовые реакторы; " с жидким замедлителем, например реакторы с трубами высокого давления; с жидким или газообразным топливом; " гомогенные реакторы, т.е. реакторы, в которых ядерное топливо и замедлитель являются однородной средой по отношению к потоку нейтронов; " реакторы с одной зоной; " реакторы с двумя зонами; " подкритические реакторы; " интегральные реакторы, т.е. реакторы, в которых части функционально связанные с реактором, не являются существенными для реакции, например теплообменники, расположенные внутри корпуса с активной зоной и др. На практике реализованы только десять основных типов реакторов и только три из них получили массовое распространение.

Атомные станции с РЕАКТОРОМ ВВЭР-1000

Технологическая схема энергоблока Конструкция реактора ВВЭР-1000 Первый контур Система компенсации давления Система подпитки Система управления и контроля Система аварийного охлаждения активной зоны Система очистки теплоносителя Внутренняя шахта реактора Информационные источники Корпус реактора Блок защитных труб Верхний блок реактора Компоновка реакторного отделения Активная зона реактора ТВС активной зоны Перегрузка топлива

Тепловая схема энергоблока

Атомные станции с реакторами РБМК 1000