Реактор БН 600 Атомная станция с реакторами на быстрых нейтронах

Тепловая схема энергоблока

БН-600 - реактор на быстрых нейтронах с электрической мощностью 600 МВт.

Корпусной реактор - размножитель с интегральной компоновкой оборудования.

Конструкция реактора на быстрых нейтронах БН-600

1-Шахта; 2-Корпус; 3-Главный циркуляционный насос 1 контура; 4-Электродвигатель насоса; 5-Большая поворотная пробка; 6-Радиационная защита; 7-Теплообменник "натрий-натрий"; 8-Центральная поворотная колонна с механизмами СУЗ; 9-Активная зона.

Ядерный реактор БН-600 выполнен с "интегральной" компоновкой оборудования, при которой активная зона и оборудование первого контура (главные циркуляционные насосы и промежуточные теплообменники) размещены в корпусе реактора.

Корпус реактора представляет собой бак цилиндрической формы с эллиптическим днищем и конической верхней крышкой, выполненной с одиннадцатью горловинами - для поворотной пробки, насосов первого контура, промежуточных теплообменников, элеваторов системы перегрузки тепловыделяющих сборок(ТВС). Цилиндрическая часть корпуса соединена с днищем путем сварки через переходное опорное кольцо, на котором установлен опорный пояс, являющийся основой несущей конструкции внутри корпуса реактора; он образует системой радиальных ребер три сливные камеры для натрия, выходящего из теплообменников.

      На опорном поясе смонтировано все внутрикорпусное оборудование напорная камера с ТВС активной зоны, зоны воспроизводства и внутреннего хранилища ТВС, первичная радиационная защита, промежуточные теплообменники, главные циркуляционные насосы первого контура. Нагрузка от массы реактора через опорное кольцо передается на катковые опоры, которые опираются на фундаментную плиту.
      В центре верхней части реактора смонтировано поворотное устройство, состоящее из большой и малой поворотной пробок, эксцентрических друг относительно друга; на малой поворотной пробке смонтирована колонна СУЗ, в которой расположены исполнительные механизмы систем: управления и защиты, перегрузки ТВС, внутриреакторного контроля.
      Реактор размещен в бетонной шахте диаметром 15 м. Конструкционный материал реактора - нержавеющая сталь марки Х18Н9 В центре верхней части реактора смонтировано поворотное устройство, состоящее из большой и малой поворотных пробок, эксцентричных друг относительно друга, на малой поворотной пробке смонтирована колонна СУЗ, несущая исполнительные механизмы систем управления и защиты, перегрузки ТВС, контроля активной зоны.

      Для компенсации температурных удлинений насосов первого контура и промежуточных теплообменников относительно корпуса реактора использованы компенсаторы приваренные к горловине корпуса реактора Корпус реактора заключен в страховочный кожух, исключающий возможность вытекания натрия из реактора даже при разрывах его корпуса.

      Активная зона и зона воспроизводства собираются из шестигранных ТВС кассетного типа с размерами "под ключ" 96 мм. Тепловыделяющая сборка состоит из твэлов, кожуха, головки для захвата ТВС при перегрузках и хвостовика, с помощью которого ТВС устанавливается в гнездо напорного коллектора и поддерживается вертикально. В хвостовике ТВС и в напорном коллекторе выполнены дроссельные устройства, обеспечивающие требуемое распределение расхода теплоносителя через ТВС, в соответствии с тепловыделением в них. Твэлы соединены между собой элементами крепления и ограждены чехлом, связывающим в единое целое все части ТВС. Твэлы заполнены по длине активной зоны втулками из обогащенной окиси урана (или смеси окиси урана) и окиси плутония, а выше и ниже активной зоны расположены торцевые экраны из брикетов окиси"отвального" урана. Твэлы зоны воспроизводства заполнены брикетами из "отвального" урана. Газовые полости над уровнем натрия в реакторе заполнены аргоном.

Тепловая схема энергоблока на быстрых нейтронах БН 600

1-Реактор; 2-Главный циркуляционный насос 1 контура; 3-Промежуточный теплообменник; 4-Тепловыделяющие сборки; 5-Парогенератор; 6-Буферная и сборная емкости; 7-Главный циркуляционный насос 2 контура; 8-Турбоустановка; 9-Генератор; 10-Трансформатор; 11-Конденсаторы; 12-Циркуляционные насосы; 13-Конденсатные насосы; 14-Подогреватели; 15-Деаэратор; 16-Питательные насосы; 17-Пруд-охладитель; 18-Отпуск электроэнергии потребителю;

Энергетика - острейшая проблема цивилизации. Уже сегодня энергетические проблемы определяют пути развития экономики, и самые светлые умы бьются над тем, как в будущем, когда энергопотребление неизбежно и неимоверно возрастет, избавить человечество от энергетического голода. Анализ идей радиоактивности в плане их возможных применений в сфере энергетики показывает, что, запасенную ядерную энергию можно конвертировать в тепловую и электрическую в процессах : - радиоактивного распада, - аннигиляции вещества с антивеществом, - ядерных реакциях деления тяжелых ядер (под действием тепловых и/или быстрых нейтронов), - в ядерных реакциях синтеза легких ядер (в первую очередь - изотопов водорода). Однако в настоящее время в энергетике реализован только один класс ядерных процессов - деление ядер тяжелых элементов под действием нейтронов. Теоретически возможны более 100 разных типов реакторов, различающихся топливом, замедлителем и теплоносителями, например: " реакторы на быстрых нейтронах, т.е. реакторы, не использующие замедлители; охлаждаемые теплоносителем, не находящимся под давлением, например реакторы бассейного типа; " реакторы на тепловых нейтронах; " гетерогенные реакторы, т.е. реакторы с разделенным ядерным топливом и замедлителем; " реакторы насыпного типа; " реакторы с гранулированным топливом, с замедлителем, находящимся под высоким давлением, например, реакторы с кипящей водой; " реакторы с общим перегревом; " реакторы, охлаждаемые водой под давлением, с различными и (или) разделенными замедлителем и теплоносителем, с твердым замедлителем, например, реакторы Магнокса; " с замедлителем, не находящимся под давлением, например реакторы бассейнового типа; " с различными и (или) разделенными замедлителем и теплоносителем, например натрий-графитовые реакторы; " с жидким замедлителем, например реакторы с трубами высокого давления; с жидким или газообразным топливом; " гомогенные реакторы, т.е. реакторы, в которых ядерное топливо и замедлитель являются однородной средой по отношению к потоку нейтронов; " реакторы с одной зоной; " реакторы с двумя зонами; " подкритические реакторы; " интегральные реакторы, т.е. реакторы, в которых части функционально связанные с реактором, не являются существенными для реакции, например теплообменники, расположенные внутри корпуса с активной зоной и др. На практике реализованы только десять основных типов реакторов и только три из них получили массовое распространение.

Тепловая схема энергоблока

Атомные станции с реакторами РБМК 1000