Канальный кипящий графитовый реактор Реакторы водо-водяного типа

Современные ядерные реакторы России

Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. Такие превращения претерпевают только нестабильные ядра

Безопасный быстрый реактор РБЕЦ

Поиск безопасного и экономичного быстрого реактора-бридера – одна из важнейших задач при разработке и оптимизации структуры будущей крупномасштабной ядерной энергетики.

В качестве шага к повышению безопасности быстрого реактора, Курчатовский институт разработал концепцию активной зоны для быстрого натриевого реактора с расширенным воспроизводством ядерного топлива и с рядом модификаций, включая: широкую решетку твэл; тепловыделяющие сборки (ТВС) без чехла; низкое гидравлическое сопротивление активной зоны; низкий подогрев теплоносителя (100-150°С); гетерогенную компоновку U-Pu активной зоны с коэффициентом воспроизводства (КВА) близким к 1 и др. ТВС с внутрикассетной гетерогенностью, сохраняет мощность по кампании за счет перераспределения энерговыделения от топливных элементов к воспроизводящим элементам. Проект обещает лучшие параметры нейтронного баланса и безопасности по сравнению с традиционными быстрыми натриевыми реакторами.

Известные недостатки натрия стимулировали поиск новых теплоносителей, которые позволили бы в большей степени реализовать позитивные качества быстрых реакторов-размножителей, а также приблизить их размещение к потребителю для использования не только электричества, но и тепла, производимого АЭС. Был выбран свинцово-висмутовый теплоноситель. Основными проблемами, требующими решения для реактора с Pb-Bi теплоносителем, являются высокая коррозионная и эрозионная активность теплоносителей на основе свинца по отношению к конструкционным материалам, а также высокий удельный вес, затрудняющий надежное дистанционирование твэл, обеспечение сейсмической устойчивости АЭС и ограничивающий скорость теплоносителя. Для практического решения проблемы коррозии выбран способ управления содержанием кислорода в теплоносителе для создания на поверхности конструкционных материалов защитного оксидного слоя Fe3O4. Концентрация кислорода в теплоносителе должна поддерживаться в довольно узком интервале для того, чтобы одновременно не допустить диссоциации защитной окисной пленки на оболочках твэл и предотвратить блокировку холодных каналов выпадающими в осадок окислами. Нормативное регулирование ФОРЭМ

Минимизация запаса реактивности на выгорание в течение всей кампании была выбрана как одна из принципиальных характеристик перспективных быстрых реакторов, которая значительно повышает безопасность реактора. Выгорание и воспроизводство топлива в активной зоне сбалансировано, т.е. коэффициент воспроизводства в активной зоне (КВА) близок к 1 и, таким образом, минимизируется положительная реактивность, которая может быть несанкционированно введена в активную зону. Малый запас реактивности на выгорание топлива позволяет минимизировать вес системы управления реактивностью и, таким образом, выровнять поля энерговыделения и температуры в активной зоне по кампании по сравнению с традиционным натриевым реактором.

Снижение удельной энергонапряженности активной зоны – другая важная черта перспективных быстрых реакторов, которая вытекает из отказа от требования минимизации времени удвоения плутония в быстрых реакторах. Удельная энергонапряженность активной зоны перспективных быстрого реактора с тяжелометаллическим теплоносителем выбирается значительно ниже по сравнению с традиционными натриевыми реакторами. Уменьшение энергии, запасенной в топливе, приводит к повышению безопасности, позволяющему значительно понизить максимальные температуры топлива и оболочки в нормальных и аварийных режимах. Данная модификация позволяет улучшить параметры эксплуатации и безопасности путем увеличения отношения шага решетки к диаметру твэлов без ухудшения характеристик воспроизводства по отношению к традиционным натриевым реактором. Например, переход в РБЕЦ на более широкую решетку по сравнению с традиционной тесной решеткой натриевого реактора улучшил пустотный, плотностной, температурный и мощностной эффект реактивности, уменьшила запасенную в топливе энергию и понизило температуру в активной зоне, уменьшил подогрев теплоносителя в активной зоне, привел к более равномерному распределению нейтронного потока и поля температур с активной зоне, увеличил естественную циркуляцию и т.д. Коррозионностойкая хромо-кремниевая сталь ферритно-мартенситного класса для топливных оболочек в комбинации с системой контроля и поддержания концентрации кислорода в теплоносителе первого контура принята в реакторе с тяжелометаллическим теплоносителем в качестве основного решения проблемы коррозии.

Большое отношение шага решетки к диаметру твэл обеспечивает большую площадь проходного сечения для потока теплоносителя и малое гидравлическое сопротивление активной зоны. Топливная таблетка с центральным отверстием диаметром 1,2 мм и с внешним диаметром 7,9 мм состоит из смешанного уран-плутониевого окисного топлива с плотностью 9,03 г/см3

«Вечный» реактор В США спроектирован ядерный реактор, не требующий остановок для перезарядки топлива. Топливо в таком реакторе выполнено в виде бильярдных шаров, циркулирующих через установку.

Дисковый реактор Конструкция импульсного реактора на быстрых нейтронах состоит из подвижной и неподвижной частей. При их соединении на короткое время возникает слабая надкритичность и развивается в дозированном количестве цепная реакция. Смешение зон дает следующие преимущества: Организация замкнутого цикла внутри реактора, без обращения к заводам для его переработки. Однако переменность мощности реактора, а также темп энерговыделения могут оказаться технически неприемлемыми

Реактор, устойчивый к нарушению теплосъема Возможность инцидентов аварийного типа связано не только с неконтролируемым развитием цепной ядерной реакции, но и с нарушениями теплосъема, приводящими к быстрому перегреву реактора

Тепловой реактор с внутренней безопасностью Наилучший ядерный цикл осуществляется в реакторах на быстрых нейтронах. Обращение к тепловым реакторам оправдано их хорошей освоенностью. Из всех известных тепловых реакторов лучшим нейтронным балансом обладает тяжеловодный (D2O) реактор типа канадского «Саndu», использующий в качестве топлива природный (необогащенный) уран

Комбинированный двухкаскадный реактор (реактор в реакторе) состоит из внутренней центральной части, представляющей собой быстрый, но маломощный критический реактор, и окружающей его внешней оболочки (бланкета), представляющей собой внешний подкритический реактор (в качестве замедлителя используется тяжелая вода).

Гибридный реактор. Развитие идеи комбинированного реактора привело к созданию концепции гибридного реактора, сочетающего источник нейтронов и подкритический реактор. Источником нейтронов может быть смесь альфа-излучателя с беррилием, ускоритель (протонов, дейтронов, электронов и т.п.), плазменная или термоядерная установка.

Тепловой реактор и термояд Источником нейтронов может быть установка, в которой протекает реакция термоядерного синтеза. Целесообразность использования термоядерной энергии определяется величиной коэффициента усиления, т.е. отношением выделившейся энергии к энергии, затраченной на возбуждение термоядерной реакции.

  Погружающийся реактор Автоматический режим поддержания критического состояния создает предпосылки для экзотических проектов. Поскольку уран – металл тяжелый, нетрудно вообразить себе реактор с удельным весом, превышающим средний удельный вес пород у поверхности Земли.

Масляные выключатели

В масляных выключателях масло используется как среда, обуславливающая гашение дуги, а также как изоляция. обладает свойствами, которые характеризуют как достоинства, так и недостатки МВ:

Процесс отключения в масле происходит следующим образом: при расхождении контактов возникает дуга высокой температуры, при которой масло испаряется и разлагается, образуя вокруг дуги газовый пузырь. Уже при этом дуга охлаждается, отдавая теплоту на испарение и разложение масла. Кроме того, усиливается циркуляция масла и увеличивается давление, что также способствует охлаждению дуги. И направив газы пузыря с большой скоростью вдоль или перпендикулярно стволу дуги, можно еще повысить эффективность гашения дуги.

Давление, возникающее в выключателе при отключении, играет и отрицательную роль и может привести к выбросу масла через выхлопную трубу, взрывам и разрушениям в помещениях распределительных устройств.

Могут возникнуть и так называемые “вторичные взрывы” вследствие взрывоопасности газов (водорода и ацетилена) в продуктах разложения масла. Для предотвращения взрывов и выбросов масла создают воздушную подушку над уровнем масла под крышкой выключателя, а уровень масла должен быть настолько выше разрыва контактов, чтобы водород и ацетилен не выбрасывались в воздушную подушку, образуя горючую смесь.

В многообъемных (баковых) выключателях контакты помещены в бак, залитый маслом (все три полюса в одном баке - при напряжении 6-10 кВ и каждый полюс в отдельном баке - 35 кВ и выше). На напряжение 6 – 10 кВ баковые выключатели имеют свободное гашение дуги в масле. Гашение дуги облегчается созданием двух разрывов на полюс. Кроме того для более надежного гасшения дуги обеспечивают достаточно большое расхождение контактов. Под действием ЭДУ дуга движется, чем обеспечивается более интенсивное охлаждение дуги.

В многообъемном выключателе масло является не только дугогасящей средой, но и изоляцией от заземленных стенок бака между фазами при размещении трех полюсов в одном баке.

При разрыве дуги в большом объеме масла (при открытой дуге) скорость движения газовых частиц недостаточна. Для создания эффективного газового дутья необходимо:

- усилить газообразование;

- придать частицам газа большую скорость движения относительно дуги.

Для этого контакты размещают в дугогасительной камере, погруженной в общий объем масла в баке выключателя (укрепляются в нижней части проходных изоляторов-вводов).

Кроме более эффективного гашения дуги дугогасительные камеры уменьшают давление на стенки бака.

Конструкции дугогасительных камер могут создавать продольное и поперечное дутье.

Большой объем масла в баковых выключателях обусловливает их высокую пожароопасность, усложняет эксплуатацию. Поэтому широкое распространение получили маломасляные выключатели.

Маломасляные выключатели представляют собой дугогасительную камеру бакового выключателя, помещенную вне бака на твердых изоляторах.

Малообъемные выключатели выполняются на все напряжения до 500 кВ включительно. Они имеют небольшие габариты и массу, низкую стоимость. Следствие невысокой взрыво- и пожароопасности могут устанавливаться не только в открытых, но и в закрытых РУ.

. Цепная ядерная реакция При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов k был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем
Реакторы третьего поколения ВВЭР-1500