Ядерные реакторы
РБМК 1000
Математика
Курсовые
Альтернативная энергетика
ВВЭР
Информатика
Черчение

Теплоэнергетика

Реактор БН
Сопромат
Электротехника
Ядерная физика
Ядерное оружие
Графика
Карта

Современные ядерные реакторы России

Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. Такие превращения претерпевают только нестабильные ядра

Реакторы третьего поколения

ВВЭР-1500

Реакторы РБМК-1000 были успешно модернизированы в реакторы РБМК-1500 (1500 МВт электрической мощности),  которые были установлены и успешно эксплуатируются на Игналинской АЭС (Литва). В последние годы был разработан проект увеличения мощности реактора ВВЭР-1000, путем превращения его в реактор ВВЭР-1500. Этот реактор предназначен для энергоблоков АЭС нового поколения.

 

Рис.2 Схема АЭС на базе реактора ВВЭР-1500

Основные технические решения:

увеличенный размер корпуса реактора; сниженная энергонапряженность активной зоны по сравнению с ВВЭР-1000; увеличенная высота обогреваемой части активной зоны; ПГ горизонтальный типа ПГВ-1000М; пассивные системы безопасности рассчитаны на работу в течение не менее 24 часов; технические средства управления тяжелыми авариями; назначенный срок службы основного оборудования 50 лет, корпуса реактора - 60 лет. Тепловая мощность 4250 МВт, Длительность кампании 6 лет, Обогащение топлива подпитки 4,4%.

Вновь создаваемые АЭС с энергоблоками ВВЭР-1500 предусматривается разместить на площадках Смоленской АЭС-2 и Ленинградской АЭС-2. Создание отечественных АЭС с энергоблоками ВВЭР-1500 позволит увеличить производство электроэнергии в России, причем с существенным ростом доли АЭС в балансе электроэнергетики страны. Характеристики АЭС с энергоблоками ВВЭР-1500 позволят обеспечить преимущество АЭС перед альтернативными энергоисточниками на органическом топливе в регионах перспективного роста энергопотребления и достичь экономических показателей, соответствующих лучшим зарубежным АЭС. Создание мощных АЭС с энергоблоками ВВЭР-1500 (а опыт ведущих мировых фирм указывает на экономическую целесообразность развития атомной энергетики на основе энергоблоков мощностью более 1300 МВт) повысит конкурентоспособность отечественных АЭС.

Реакторы РБМК-1000 были успешно модернизированы в реакторы РБМК-1500 (1500 МВт электрической  мощности), которые были установлены и успешно эксплуатируются на Игналинской АЭС (Литва). В последние годы был разработан проект увеличения мощности реактора ВВЭР-1000, путем превращения его в реактор ВВЭР-1500. Этот реактор предназначен для энергоблоков АЭС нового поколения.

Многопетлевой кипящий энергетический реактор МКЭР-800 Развитием канальных реакторов является многопетлевой кипящий энергетический реактор электрической мощностью 800 МВт (МКЭР-800)

Проектируемые реакторы В настоящее время функционирует Международный проект «Generation IV» в рамках программы «Ядерно-энергетические системы IV поколения» направленный на разработку реакторов IV поколения. В России в Физико-энергетическом институте (г.Обнинск) разработана общая концепция ADS с двумя областями бланкета - внутренний бланкет с быстрым спектром нейтронов (F-бланкет) и внешний – с тепловым спектром нейтронов (T-бланкет).

Неводные теплоносители Одним из основных вредных факторов воздействие АЭС (как и обычных тепловых станций) на окружающую среду является тепловое загрязнение. Естественная радиационная безопасность обеспечена: использованием высококипящего (Ткип=2024К), радиационно стойкого и слабо активируемого свинцового теплоносителя, химически пассивного при контакте с водой и воздухом, что позволяет осуществлять теплоотвод при низком давлении и исключает пожары, химические и тепловые взрывы при разгерметизации контура, течах парогенератора и любых перегревах теплоносителя Сочетание природных свойств свинцового теплоносителя, мононитридного топлива, физических характеристик быстрого реактора, конструкторских решений активной зоны и контуров охлаждения выводит БРЕСТ на качественно новый уровень естественной безопасности и обеспечивает его устойчивость без срабатывания активных средств аварийной защиты в крайне тяжелых авариях, непреодолимых ни одним из существующих и проектируемых реакторов

Трансформаторы тока

Трансформатор тока предназначен для уменьшения первич­ного тока до значений, наиболее удобных для измерительных при­боров и реле, а также для отделения цепей измерения и защиты от первичных цепей высокого напряжения. Трансформатор тока имеет замкнутый магнитопровод 2 и две обмотки — первичную 1 и вторичную 3. Первичная обмотка включается последовательно в цепь измеряемого тока I1, ко вторичной обмотке присоединяются измерительные приборы, обтекаемые током I2. Трансформатор тока характеризуется номинальным коэффи­циентом трансформации: K1=I1НОМ/I2НОМ., где I1НОМ — номинальный первичный ток; I2НОМ — номинальный вторичный ток.

 В зависимости от предъявляемых требова­ний выпускаются трансформаторы тока с классами точности 0,2; 0,5; 1; 3; 10. Указанные цифры представляют собой токовую по­грешность в процентах номинального тока при нагрузке первич­ной обмотки током 100—120% для первых трех классов и 50— 120% для двух последних. Для трансформаторов тока классов точности 0,2; 0,5 и 1 нормируется также угловая погрешность.

Погрешность трансформатора тока зависит от вторичной на­грузки (сопротивление приборов, проводов, контактов) и от крат­ности первичного тока по отношению к номинальному. Увеличение нагрузки и кратности тока приводит к увеличению погрешности.

Трансформаторы тока класса 0,2 применяются для присоеди­нения точных лабораторных приборов, класса 0,5 — для присое­динения счетчиков денежного расчета, класса 1 — для всех тех­нических измерительных приборов, классов 3 и 10 — для релейной защиты.

Кроме рассмотренных классов выпускаются также трансформа­торы тока со вторичными обмотками типов Д (для дифференциаль­ной защиты), 3 (для земляной защиты), Р (для прочих релейных защит).

Токовые цепи измерительных приборов и реле имеют малое сопротивление, поэтому трансформатор тока нормально работает в режиме, близком к режиму к. з. Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастает, так как он будет теперь определяться только м. д. с. первичной обмотки. В этом режиме магнитопровод может нагреться до недопу­стимой температуры, а на вторичной разомкнутой обмотке появится высокое напряжение, достигающее в некоторых случаях десятков киловольт.

Конструкции трансформаторов тока: Трансформаторы тока для внутренней установки до 35 кВ имеют литую эпоксидную изоляцию.По типу первичной обмотки различают катушечные (на напря­жение до 3 кВ включи­тельно), одновитковые и многовитковые трансформаторы.

При токах, меньших 600 А, применяются многовитковые транс­форматоры тока ТПЛ, у которых первичная обмотка 3 состоит из нескольких витков, ко­личество которых опре­деляется  необходимой м.д.с.

. Цепная ядерная реакция При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов k был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем
Проститутки

Инженерная графика

 

Сопромат