Канальный кипящий графитовый реактор Реакторы водо-водяного типа

Современные ядерные реакторы России

Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с квантами) или друг с другом. Это взаимодействие возникает благодаря действию ядерных сил при сближении частиц до расстояний порядка 10-13 см.

Реактор работает на тепловых нейтронах, в качестве теплоносителя используется обычная вода (гетерогенный реактор).

Рис.3. Активная зона реактора Энергосбережение – это организационная, научная, практическая, информационная деятельность, направленная на рациональное и экономическое использование первичной и преобразованной энергии и природных энергетических ресурсов на народное хозяйство с использованием технико-экономических и правовых методов.

В одноконтурном канальном энергетическом уран-графитовом реакторе вода при прохождении через активную зону нагревается до температуры кипения. В верхней части активной зоны образуется пар (именно кипение воды в активной зоне реактора принципиально отличает РБМК от ВВЭР). Пароводная смесь поступает в сепаратор, где делится на воду, возвращающуюся на вход реактора, и пар, идущий непосредственно на турбину. Конденсат пара из конденсатора турбины направляют через подогреватели низкого давления в деаэратор, а затем в реактор. Неконденсирующиеся газы из конденсатора турбины выбрасывают в систему спец. вентиляции или на очистку. Электричество, вырабатываемое турбиной, тратится также на работу циркуляционных насосов.

Канальные кипящие реакторы типа РБМК состоят из цилиндрической графитовой кладки замедлителя, размещаемой в бетонной шахте, через которую проходят специальные каналы для органов регулирования и технологические каналы с урановым топливом, охлаждаемым водой. Проходя через технологические каналы, вода сначала подогревается, а затем частично испаряется. Пароводяная смесь по индивидуальным трубопроводам направляется в барабан - сепаратор, где пар осушается, а затем транспортируется в турбину. Конденсат пара смешивается с теплоносителем из барабан - сепаратора и циркуляционным насосом возвращается в реактор.

Основные технические характеристики РБМК следующие. В самом общем виде реактор представляет собой цилиндр составленный из графитовых блоков, помещенный в бетонную шахту. Диаметр, этого цилиндра, около 12 м, а высота около 8 м. Реактор окружен боковой биологической защитой в виде кольцевого бака с водой. Этот цилиндр пронизывают 1693 топливных канала, представляющих собой трубки из сплава циркония диаметром 88 мм и толщиной 4 мм. В топливном канале устанавливается тепловыделяющая сборка (ТВС). Активная зона реактора - вертикальный цилиндр диаметром 11.8 метров и высотой 7 метров. По периферии активной зоны, а также сверху и снизу расположен боковой отражатель -сплошная графитовая кладка толщиной 0.65 метра Реактор размещен в бетонной шахте размером 21,6*21,6*25,5 м. Сверху и снизу расположены специальные плиты, обеспечивающими биологическую защиту (во время работы реактора, по его крышке («пятаку» реактора) можно ходить Тепловыделяющая сборка (ТВС) и технологический канал - раздельные узлы -индивидуальные тракты подвода и отвода теплоносителя Характерная особенность канальных реакторов - возможность регулирования и контроля расхода теплоносителя по каждому каналу. Теплоноситель, вода, движется в каналах с низу в верх, омывая ТВС и снимая тепловую энергию. Подвод теплоносителя осуществляется к каждому каналу, существует возможность регулировать расход воды через канал. Второй тепловой контур. Барабан сепаратор, забирая тепловую энергию вместе с паром из первого контура, где он является потребителем, отдает ее во второй контур. Следовательно, он является источником тепловой энергии для второго теплового контура. Первый ядерный уран-графитовый реактор на тепловых нейтронах был построен в 1942 в США под руководством Э.Ферми. В СССР аналогичный реактор был построен в 1946 под руководством И.В. Курчатова. Кипящие реакторы по исполнению могут быть корпусными и канальными

Теперь перейдем к описанию самого тренажера.


Рис.1. Кривая обратного умножения


 

Описание тренажера

Тренажер представляет собой модель быстрого реактора (БН-350) с урановым оксидным топливом и жидким натрием в качестве теплоносителя. Высота активной зоны 1.6м, но для простоты работы мы можем принять ее равной 1м. Сначала коротко остановимся на возможностях тренажера.

Общее описание возможностей тренажера

Компьютерный тренажер реактора БН-350, как уже отмечалось, был создан в Российском научном центре -Физико-энергетическом институте (РНЦ ФЭИ). Основное назначение тренажера – обучение персонала основам управления реактором и реакторной установкой в разных режимах. С помощью достаточно реалистичного пульта управления (и контроля) тренажер позволяет моделировать

загрузку реактора топливом (набор критической массы) при пуске;

 поведение критического реактора и управление им на разных уровнях мощности без обратных связей;

  измерения дифференциальной и интегральной эффективности органов СУЗ и другие измерения при пуске;

 поведение критического реактора и управление им на разных уровнях мощности с обратными связями по температуре топлива, теплоносителя, мощности, глубине выгорания.

Опишем, как конкретно реализуется управление реактором, то есть остановимся на организации систем контроля и управления.

Общая схема пульта контроля и управления приведена на рис.2.

Квантовая физика учитывает квантовые свойства поля: всякому полю должна соответствовать определенная частица - квант поля, которая и является переносчиком взаимодействия. Одна из взаимодействующих частиц испускает квант поля, другая его поглощает. В этом и состоит механизм взаимодействия частиц. Существенно, что обмен частицами лежит в основе вообще всех взаимодействий частиц и является фундаментальным квантовым свойством природы (например, электромагнитные взаимодействия осуществляются путем обмена фотонами).
Реакторы третьего поколения ВВЭР-1500