Канальный кипящий графитовый реактор Реакторы водо-водяного типа

Современные ядерные реакторы России

Типы ядерных реакций Установлено, что реакции, вызываемые не очень быстрыми частицами, протекают в два этапа. Первый этап - это захват налетающей частицы а ядром X с образованием составного (или промежуточного) ядра. При этом энергия частицы а быстро перераспределяется между всеми нуклонами ядра, и составное ядро оказывается в возбужденном состоянии

Сравнение различных типов энергетических ядерных реакторов

Основные параметры АЭС с реакторами ВВЭР и РБМК приведены в Табл.5, а с реактором БН – в Табл.6. Табл. 5. Основные параметры АЭС с реакторами ВВЭР и РБМК

Параметр

Тип реактора

ВВЭР-440

ВВЭР-1000

РБМК-1000

РБМК-1500

Мощность (эл.), МВт Мощность (тепл.), МВт Схема, число петель Размер активной зоны: Н, м D, м

440 1375 Петлевая,6

2,46 2,88

1000 3000 Петлевая,4

3,56 3,10

1000 3200 Петлевая 7

11,8 18,5(22,3)

1500

Петлевая 7

11,8 18,5

Из приведенного выше рассмотрения конструкций и методов эксплуатации энергетических атомных реакторов разных типов можно сделать следующие выводы. Реакторы ВВЭР достаточно безопасны в эксплуатации, но требуют высокообогащенного урана. Реакторы РБМК безопасны лишь при правильной их эксплуатации и хорошо разработанных системах защиты, но зато способны использовать малообогащенное топливо или даже отработанное топливо ВВЭР-ов. Реакторы на тяжелой воде хороши, но дорого и экологически не безопасно добывать тяжелую воду. Технология производства реакторов с шаровой засыпкой еще недостаточно разработана, хотя этот тип реакторов наиболее подходит для широкого применения, в частности, из-за отсутствия катастрофических последствий при аварии с разгоном реактора. За реакторами на быстрых нейтронах - будущее производства топлива для ядерной энергетики, эти реакторы наиболее эффективно используют ядерное топливо, но их конструкция очень сложна и пока еще малонадежна.

Промышленные реакторы В СССР промышленные (военные) уран-графитовые реакторы с высокими потоками тепловых нейтронов использовались для наработки оружейного плутония и других делящихся нуклидов. Попутно решались ещё две задачи: получение электроэнергии и снабжение теплом близлежащие населенные пункты (В США военные реакторы применяли исключительно для наработки оружейного плутония). Время  удвоения - время, в течение которого количество делящегося материала, первоначально загруженного в реактор, удваивается в процессе расширенного воспроизводства).

  Графитовые тепловые реакторы Исторически первыми промышленными реакторами – наработчиками плутония – были канальные реакторы на тепловых нейтронах с графитовым замедлителем и прямым проточным водным охлаждением (Аналогом такого реактора является реактор энергетический РБМК, чернобыльского типа).

Легководные реакторы Существуют и промышленные реакторы – наработчики плутония, функционирующие на обычной воде (правда глубоко очищенной от примесей). Примером может служить реактор «Руслан», пущенный на «Маяке» в 1985.

Исследовательские ядерные реакторы Под исследовательским реактором подразумевается ядерный реактор. предназначенный для получения и использования нейтронов и ионизирующего излучения в исследовательских и других целях, для чего на нем могут применятся экспериментальные устройства. В российских (советских) реакторах использовалось топливо трех различных поколений. Степень обогащения повышалась, чтобы достигнуть большей мощности и больших потоков нейтронов.

Исследовательские реакторы мощностью до 20 МВт, предназначенные для физических исследований, учебных целей и производства радиоактивных изотопов. Реактор БОР-60 – опытный реактор на быстрых нейтронах, смонтированный в Институте атомных реакторов (г. Димитровград, 1969). Реактор является уникальной многоцелевой установкой, предназначенной для решения проблем реакторов на быстрых нейтронах с натриевым теплоносителем и ядерных энергетических установок других типов, в том числе с термоядерными реакторами, а также для проведения исследований, необходимых в различных областях науки и техники. Активная зона реактора объемом около 50 л помещена в тяжеловодный отражатель и представляет собой компактный интенсивный источник нейтронов деления мощностью 100 МВт.

Деаэратор - устройство, предназначенное для удаления растворенных в воде кислорода и агрессивных газов (СО2, НNО3 и др.), способствующих интенсивной коррозии стенок парогенераторов, трубопроводов, теплообменников и прочего оборудования АЭС.

Система контроля целостности технологических каналов (КЦТК) - осуществляет контроль влажности и температуры в области между кладкой и технологическими каналами (ТК) реактора РБМК. При обнаружении аварии реактор останавливают и заменяют аварийный канал. Аварийная защита настолько эффективна, что в случае аварии полностью глушит реактор и, в отличие от предыдущего поколения реакторов, поддерживает его в заглушенном состоянии без применения растворов борной кислоты.

Проведите измерение полной эффективности АЗ методом сброса. Это можно сделать из исходного положения ОУ=0.020 или из специального меню AZ тренажера. Для этого необходимо спровоцировать сброс АЗ и, при появлении сигнала «НК» стержней АЗ, остановить компьютер кнопкой «пауза», зафиксировать ток гальванометра IАЗ. Вычислить ОУАЗ и полный вес АЗ определится как DrАЗ = ОУ0z - ОУАЗ . В случае использования специального меню AZ необходимо измерить мощность до сброса W0 и после сброса W1 . Измерения необходимо провести как с уровня мощности порядка 50-90%, так и снизив мощность перед измерением до 1%(т.е. перейти в промежуточный диапазон нейтронной мощности). Тогда можно определить полную эффективность АЗ из соотношения:

W1/ W0= 1/ (1-DrАЗ/bэфф)  (3.3)

 Провести калибровку нейтронной мощности. Как известно, в подкритическом реакторе умножение можно связать со скоростью делений F следующим образом:

У=(Fn+q)/q. (3.4)

Абсолютная тепловая мощность реактора W должна быть откалибрована по соотношению F= q(Y-1)/nf (с учетом того, что 1Вт= 3.3*1010 дел/сек). Зная умножение и мощность источника (н/сек), определите мощность реактора при текущем показании гальванометра нейтронной мощности (Вт). Пересчитайте ожидаемую мощность при показании гальванометра для 100% нейтронной мощности.

После окончания измерений при К=0.96-0.98 необходимо закончить процедуру набора критической массы. Загрузку последних ТВС проводить по особой процедуре.

 Погрузить КП в зону до НК. Измерить ток камеры, вычислить ОУ, нанести его на график.

 По кривой ОУ оценить, сможем ли мы погрузить ТВС без критичности.

Загрузить следующую ТВС, наблюдая за периодом. Если период приблизился к 30, затем к 25 сек –немедленно переключить кран на выгрузку!!! Измерить ток камеры, вычислить ОУ и нанести значение ОУ на график. Оценить расстояние до критичности.

 Шагами по 20% извлекать КП. Измерить ток камеры, вычислить ОУ и нанести значение ОУ на график. Если период разгона в переходном процессе увеличивается- критичность не достигнута. Если период положителен и практически не растет – мы вблизи критичности, но это не истинная критичность, поскольку в реакторе источник. Контролируйте процесс по графику ОУ.

 Когда период стабилизировался в районе Т=40-70 сек. , то реактор почти критичен. Медленно и осторожно вывести источник из реактора по 1 декаде!! Движением КП установите реактор в точно критическое состояние (это значит мощность не растет , период Т=+9999) и зафиксируйте это состояние (особенно КП) в журнале.

В теории атомного ядра важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра. Ограничимся кратким рассмотрением двух моделей ядра: капельной и оболочечной. Капельная модель. В ней атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью (~1014 г/см3). Капельная модель позволила вывести полуэмпирическую формулу для энергии связи ядра и помогла объяснить ряд других явлений, в частности процесс деления тяжелых ядер.
Реакторы третьего поколения ВВЭР-1500