Канальный кипящий графитовый реактор Реакторы водо-водяного типа

Современные ядерные реакторы России

Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с квантами) или друг с другом. Это взаимодействие возникает благодаря действию ядерных сил при сближении частиц до расстояний порядка 10-13 см.

Водо-водяной реатор, ВВЭР

Реакторы водо-водяного типа с обычной («легкой») водой под давлением нашли широкое развитие в России. Весьма привлекательны дешевизна используемого в них теплоносителя-замедлителя и относительная безопасность в эксплуатации,  несмотря на необходимость использования в этих реакторах обогащенного урана. Реактор ВВЭР-1000 представляет собой второе поколение легководных реакторов большой мощности. Электрическая мощность энергоблоков составляет 1000 МВт. Ядерные реакторы этого типа установлены на Кольской, Калининской, Балаклавской АЭС (Россия), Запорожской, Ровенской, Хмельницкой, Южно-Украинской АЭС (Украина), также на АЭС Болгарии, Чехии, Финляндии. Реактор с водой под давлением - легководный реактор, в котором вода находится под давлением, достаточным для предотвращения ее закипания и в то же время обеспечивающим высокую температуру теплоносителя (более 300°С). Тепловая энергия, вырабатываемая в активной зоне реактора, передается от твэлов теплоносителю (воде) первого контура. Теплоноситель поступает  в теплообменники (парогенераторы), где приводит в действие отдает энергию во второй контур. Образующийся во втором контуре пар турбогенератор.

Рис.12 Блок-схема реактора ВВЭР

В западных странах этот тип реактора обозначают PWR. Эксплуатирующиеся в России водо-водяные энергетические реакторы (ВВЭР) относятся к типу реакторов с водой под давлением.

ВВЭР - водо-водяной энергетический реактор. Корпусной энергетический реактор, теплоносителем и замедлителем, в котором служит некипящая вода под давлением.

Реактор ВВЭР-1000 представляет собой второе поколение легководных реакторов большой мощности. Электрическая мощность энергоблоков составляет 1000 МВт. В энергетических реакторах корпусного типа ВВЭР (водо-водяной энергетический реактор) в качестве замедлителя нейтронов и теплоносителя используется обычная вода (гетерогенный реактор). Активная зона помещается в один общий корпус, через который прокачивается вода В корпусном кипящем реакторе активная зона размещена в высокопрочном, толстостенном стальном баке Твелы реактора собирают в тепловыделяющие сборки

Начнем с анализа наиболее принципиальных различий: ВВЭР — корпусной реактор (давление держится корпусом реактора); РБМК-- канальный реактор (давление держится независимо в каждом канале); в ВВЭР теплоноситель и замедлитель — одна и та же вода (дополнительный замедлитель не вводится), в РБМК замедлитель — графит, а теплоноситель — вода; в ВВЭР пар образуется во втором корпусе парогенератора, в РБМК пар образуется в непосредственно в активной зоне реактора (кипящий реактор) и прямо идет на турбину — нет второго контура.

В подкритическом реакторе уровень нейтронной мощности оказывается связан с величиной критичности К или реактивности r через мощность источника, тогда

 или  (1.5)

Здесь вводят понятие коэффициента умножения Yi или просто умножения нейтронов для состояния реактора «i» как отношение числа нейтронов в реакторе в состоянии «i» -Ni к числу нейтронов без размножения N0 (или с минимальным стартовым размножением) Yi= Ni/ N0 . Реально мы, конечно, не знаем истинного числа нейтронов в реакторе, а только оцениваем его по скорости отсчетов детектора или току ионизационных камер Ii, которые связаны с числом нейтронов через эффективность этих детекторов (e) как Ii = e* Ni . Тогда можно условно принять: 

Yi= Ii / I0 . (1.6)

Примечание. Отметим, что в этом соотношении не все так уж просто. В числителе мы используем эффективность детектора по отношению к размножающимся вторичным нейтронам деления (спектр деления с энергией примерно 2МэВ), а в знаменателе- по отношению к нейтронам источника (спектр испарительный с энергией около 1 МэВ).

Из сравнения (1.3) и (1.6) видно, что при таком определении

, (1.7)

где С(К)-функция, в которой учитывается пространственное распределение нейтронов и эффективность детектора. Практически все факторы, влияющие на величину C(Keff), поддаются расчёту (хотя зачастую сложному). Однако в этом нет необходимости, так как фундаментальный факт состоит в том, что при приближении к критичности C(Keff) стремится к 1:

= при Keff Þ l. (1.8)

Квантовая физика учитывает квантовые свойства поля: всякому полю должна соответствовать определенная частица - квант поля, которая и является переносчиком взаимодействия. Одна из взаимодействующих частиц испускает квант поля, другая его поглощает. В этом и состоит механизм взаимодействия частиц. Существенно, что обмен частицами лежит в основе вообще всех взаимодействий частиц и является фундаментальным квантовым свойством природы (например, электромагнитные взаимодействия осуществляются путем обмена фотонами).
Реакторы третьего поколения ВВЭР-1500