Математика, информатика, электротехника, сети - лекции, конспекты, задачи с решениями

Типовик
Расчет цепей

Физика

Интегралы
Карта

Высшая математика примеры решения задач

Матрицы

Ряды

Кривые второго порядка

Производные и дифференциалы

Линейная и векторная алгебра

Введение в математический анализ

Интегральное исчисление

Первообразная и неопределённый интеграл

Несобственные и определенные интегралы

Дифференциальное исчисление

Уравнения в полных дифференциалах

Теории функций комплексного переменного

Функции нескольких переменных

Физика

Радиоактивность

Символическая запись ядерной реакции

Построение векторной диаграммы импульсов

Взаимодействие нейтронов с ядрами

Физика ядерного реактора

Цепная ядерная реакция

Реактор РБМК – 1000

Эффективная эквивалентная доза

Степень опасности радионуклидов

Модели атомных ядер

Расчет выпрямителей, работающих на нагрузку с емкостной реакцией

Предварительный расчет трансформатора

Методика расчёта линейных электрических цепей

Расчёт трёхфазной цепи при соединении приемника в звезду

Метод узловых потенциалов

Теоретические основы комплексного метода расчета цепей переменного тока

Магнитносвязанные электрические цепи

Достоинства трехфазной системы

Электромагнетизм

Магнитные свойства вещества

Электрическая цепь

Интерференция света

Дифракция света

Излучение лазера

Электростатика

Диэлектрическая проницаемость среды

Емкость плоского конденсатора

Кинематика материальной точки

Кинематика задачи

Молекулярная физика и термодинамика

Законы постоянного тока

Электромагнетизм

Элементы теории относительности.

Расчет токов коротких замыканий

Переходные процессы в линейных цепях

Компьтерные сети локальные и глобальные

Архитектура ПК

Информационные процессы

Основы информации

Pascal учебник

Алгоритмы

Защита информации

Архивация данных

Основы в Интернет

Вычислительные сети

Microsoft Access

Microsoft Excel

Microsoft Word

Windows 2000

Локальные и глобальные компьютерные сети

Глобальные сети

Средства анализа и управления сетями

Пакеты протоколы уровни

Построение компьютерной сети

Создание корпоративной Webсети

Аварии в компьтерных сетях

Сервера в компьютерной сети

Прокси-серверы

Ethernet и Fast Ethernet Алгоритмы проектирование стандарты

Среда WEB Язык HTML

Основы передачи дискретных данных

Базовые технологии локальных сетей сети

Построение локальных сетей по стандартам физического и канального уровней

Сетевой уровень как средство построения больших сетей

Курсовой проект по электротехнике Примеры решения задач

Линейные электрические цепи постоянного и переменного тока Законы Кирхгофа для линейных электрических цепей

Переходные процессы в электрических цепях Методы анализа Переходный процесс возникает непосредственно после скачкообразного изменения параметра электрической цепи.

Расчет сложных цепей постоянного тока

Метод узловых потенциалов. Основан на применении первого закона Кирхгофа и заключается в следующем: 1) один узел схемы цепи принимается базисным с нулевым потенциалом; 2) для остальных Y-1 узлов составляются уравнения по первому закону Кирхгофа, с токами ветвей выраженными через узловые потенциалы; 3) решается полученная система уравнений из которой определяются потенциалы Y-1 узлов относительно базисного, а затем токи ветвей по закону Ома для полной цепи. [an error occurred while processing this directive]

Символический метод расчета электрических цепей однофазного синусоидального тока

Электрические и магнитные цепи Электротехника

Электрический ток. Плотность тока. Электрическое напряжение.

Закон Ома В 1827 г. немецкий физик Г. Ом, проведя серию точных экспериментов, установил один из основных законов электрического тока.

Электрическая энергия и электрическая мощность

Закон Ома для участка цепи, содержащего ЭДС Рассмотрим участок цепи, содержащий сопротивление и ЭДС

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа.

Преобразование линейных электрических схем Расчет и исследование сложных электрических схем во многих случаях можно значительно облегчить за счет преобразования.

Параллельное соединение резисторов Параллельным соединением приемников называется такое соединение, при котором к одним и тем же двум узлам электрической цепи присоединяется несколько ветвей

Линейные цепи синусоидального тока Общие сведения В электроэнергетике используют в основном переменный ток.

Действующее значение синусоидального тока Мгновенное значение переменного тока все время изменяется от нуля до максимального значения.

Индуктивная катушка в цепи синусоидального тока как элемент схемы замещения реальной цепи синусоидального тока дает возможность учитывать при расчете явление самоиндукции и явление накопления энергии в ее магнитном поле.

Конденсатор в цепи синусоидального тока Включение конденсатора в цепь переменного тока не вызывает разрыва цепи, так как ток в цепи все время поддерживается за счет заряда и разряда конденсатора.

Анализ цепей синусоидального тока с помощью векторных диаграмм Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты и построенных на плоскости с соблюдением их ориентации друг относительно друга, называют векторной диаграммой.

Последовательное соединение резистора, катушки и конденсатора.

Вольтамперные характеристики полупроводниковых диодов [an error occurred while processing this directive]

Неразветвленная цепь синусоидального тока Рассмотрим цепь из трех последовательных токоприемников : первые два имеют активно-индуктивный характер, третий является последовательным соединением резистора и конденсатора.

Параллельное включение приемников энергии Рассмотримцепь из двух параллельных ветвей

Реактивная составляющая входного тока определяется как алгебраическая сумма реактивных составляющих токов в параллельных ветвях.

Мощности цепи синусоидального тока Энергетические соотношения в отдельных элементах  рассматривались в предыдущей теме.

Комплексный метод расчета цепей синусоидального тока Широкое распространение на практике получил метод расчета цепей синусоидального тока, который принято называть комплексным.

Комплекс полного сопротивления и комплекс полной проводимости.  Законы Кирхгофа в комплексной форме.

Электрические цепи с взаимной индуктивностью Общие сведения При рассмотрении цепей синусоидального тока до сих пор учитывалось только явление самоиндукции катушек, обусловленное током в цепи.

Переходные процессы в электрических цепях Общие сведения Понятие переходного процесса.

Цепи несинусоидального тока Общие сведения Причин отличия кривых токов и напряжений от синусоидальной формы несколько.

Мощности цепи несинусоидального тока Под активной мощностью несинусоидального тока понимают среднее значение мгновенной мощности

Расчет электрических цепей несинусоидального тока Для расчета цепей несинусоидального тока напряжения источника или ЭДС должны быть представлены рядом Фурье.

Нелинейные цепи постоянного и синусоидального тока Общие сведения В теории линейных цепей предполагается, что параметры всех сосредоточенных элементов: сопротивление резистора , индуктивность катушки , емкость конденсатора  – являются неизменными, не зависящими от токов и напряжений.

Расчет нелинейных цепей постоянного тока Выбор метода расчета нелинейной цепи в значительной мере зависит от того, как заданы ВАХ нелинейных элементов – графиком, таблицей или аналитическим выражением.

Магнитное поле и магнитные цепи Ферромагнитные материалы и их магнитные свойства .

Закон полного тока и его применение для расчета магнитного поля Магнитной цепью называется совокупность магнитодвижущих сил (МДС), ферромагнитных тел или каких-либо иных сред, по которым замыкается магнитный поток.

Для разветвленных магнитных цепей справедливы законы Кирхгофа.

Расчет неразветвленных магнитных цепей Определение МДС по заданному магнитному потоку (задача синтеза, или прямая задача).

Импульсные цепи В современных электронных устройствах, системах связи, автоматического управления и вычислительной технике информация часто передается в виде электрических импульсов различной формы.

Электромагнитные устройства. Трансформаторы.

Векторная диаграмма  трансформатора В реальном трансформаторе в отличие от идеального учитываются активные сопротивления обмоток, магнитные потоки рассеяния обмоток и потери мощности в стали.

Трехфазные трансформаторы Преобразование электрической энергии в трехфазной цепи осуществляют с помощью трехфазных трансформаторов, которые могут быть выполнены в виде трехстержневых или в виде группы из трех однофазных трансформаторов.

Электрические машины переменного тока Асинхронная машина – это бесколлекторная машина переменного тока, у которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т.е. с угловой скоростью, отличной от угловой скорости поля.

Электродвижущие силы в обмотках статора и ротора Вращающийся магнитный поток в воздушном зазоре пересекает проводники обмоток статора и ротора и индуктирует в них синусоидальные ЭДС.

Схема замещения и векторная диаграмма асинхронного двигателя При анализе работы асинхронной машины используют схему замещения.

Пуск и регулирование скорости асинхронного двигателя Способы пуска.

Однофазный асинхронный двигатель – двигатель, на статоре которого однофазная обмотка, а на роторе – короткозамкнутая обмотка.

Трехфазный асинхронный двигатель в однофазном режиме. Возможны различные варианты использования трехфазных двигателей в однофазном режиме.

Холостой ход синхронного генератора При холостом ходе обмотка якоря (статора) разомкнута и магнитное поле машины создается только обмоткой возбуждения ротора=

Характеристики синхронного генератора при автономной работе Характеристика холостого хода

Вентильные генераторы индукторного типа Вентильные генераторы индукторного типа являются бесконтактными.

Электронные приборы и устройсва Возникновение электроники было подготовлено всем ходом развития промышленного производства и в частности электротехники.

Полупроводниковые приборы Элементы физики полупроводников.

Полупроводниковые диоды В пограничном слое двух полупроводников с различным характером электропроводности при одном направлении тока дырки и электроны движутся навстречу друг другу, и при их встрече происходит рекомбинация.

Стабилитрон представляет собой специальный полупроводниковый диод, напряжение электрического пробоя которого очень слабо зависит от протекающего через него тока.

Тиристоры представляют собой кристаллическую структуру из четырех слоев чередующихся электронной и дырочной проводимостей  (рис. 12.8) с тремя электродами: анодом А, катодом К и управляющим электродом УЭ, отходящими от слоев p1, n2 и n1 соответственно (тиристор с Nуправляющим электродом).

Холлотроны представляет собой магнитно-полупроводниковый прибор, действующий на основе гальваномагнитного эффекта возникновения ЭДС в кристалле проводника или полупроводника, находящемся в магнитном поле, при прохождении по нему электрического тока на основе эффекта Холла.

Биполярные транзисторы Транзисторы являются управляемыми полупроводниковыми приборами, обеспечивающими усиление сигналов.

Полевые транзисторы разделяют на униполярные (с одним p-n - переходом) и полевые с изолированным затвором (без p-n - перехода) или со структурой МДП (металл – диэлектрик – полупроводник).

Интегральные микросхемы Постоянное усложнение схем электронных устройств привело к существенному увеличению количества входящих в них элементов.

Электронно-оптические приборы Индикаторные приборы.

Газоразрядный индикатор относится к ионным приборам тлеющего разряда и выполняется с холодным катодом.

Полупроводниковые индикаторы Принцип действия полупроводникового индикатора основанна излучении квантов света при рекомбинации носителей заряда в области р-n – перехода, к которому приложено прямое напряжение.

Жидкокристаллические индикаторы не излучают собственный свет, а только воздействуют на свет, проходящий через индикатор.

Оптоэлектронные приборы Оптоэлектронными называют приборы, преобразующие электрические сигналы в оптические.

Волоконно-оптический прибор – это диэлектрический волновод, по которому энергия передается в виде электромагнитных волн оптического диапазона (f ≈ 1014 Гц).

Электронные усилители и генераторы

Усилители на микросхемах В настоящее время многокаскадные усилители переменного тока с RC-связью выполняют на основе интегральных микросхем.

Мультивибраторы Генератор, представляющий собой двухэлементный усилитель с емкостной связью, выход которого соединен с входом, называют мультивибратором.

Триггеры Электронное устройство, имеющее два устойчивых стационарных состояния, в котором переходы из одного состояния в другое и обратно осуществляются под действием запускающих импульсов, называется триггером.

Коммутационные схемы В сложных устройствах автоматического управления процессами для контроля большого числа параметров и различных переключений наряду с электронными ключами используют более сложные устройства, называемые коммутационными схемами.

Аналого-цифровые и цифро-аналоговые преобразователи При использовании логических и цифровых устройств в системах автоматизированного управления возникает проблема связи их с различными электронными преобразователями входных сигналов и исполнительными механизмами, у которых в большинстве случаев информация представлена в аналоговой форме в виде различных уровней напряжения и тока.

Микропроцессор (МП) – программируемое электронное устройство, которое предназначено для обработки информации, представленной в цифровом коде, и управления процессом этой обработки.

Источники питания электронных устройств Применение различного рода электронных устройств для управления производственными процессами подразумевает использование электрической энергии определенного вида для их питания (постоянный, переменный ток).

Трехфазные выпрямители В трехфазных цепях переменного тока промышленной частоты (50 Гц) в основном используют две схемы выпрямителей: трехфазный выпрямитель с нейтральной точкой и трехфазный мостовой выпрямитель.

Работа и мощность постоянного тока Пусть на концах участка цепи существует и поддерживается напряжение U. Тогда за время t через любое сечение проходит заряд q = I×t, это равносильно переносу силами электрического поля заряда q с одного конца проводника на другой.

Расчёт неразветвлённой цепи с помощью векторных диаграмм

Сглаживающие фильтры Для уменьшения пульсаций (сглаживания) выпрямленного напряжения используют специальные устройства – сглаживающие фильтры.

Стабилизаторы Электронные устройства предъявляют достаточно жесткие требования к качеству электроэнергии, потребляемой от источников питания.

Инверторы Некоторые электронные устройства, входящие в состав автоматических систем управления производственными процессами, требуют для своей работы энергию переменного тока определенной частоты.

Электрические измерения Основные понятия и определения в метрологии.

Электрические средства измерениий Электромеханические измерительные приборы.

Трехфазный счетчик электрической энергии представляет собой двухэлементный (для трехпроводных систем) или трехэлементный (для четырехпроводных систем) индукционный прибор.

Цифровой измерительный прибор – это прибор, автоматически вырабатывающий сигналы измерительной информации, показания которого представлены в цифровой форме.

Измерение сопротивлений Сопротивления относятся к числу основных параметров электротехнического оборудования.

Измерение и контроль сопротивления изоляции. Электрическая изоляция оборудования, находящегося под различными потенциалами (в том числе и по отношению к земле), необходима не только для нормального функционирования оборудования, но и для безопасности обслуживающего персонала.

Фототранзисторы. В фототранзисторах используются усилительные свойства р–n–р или n–р–n -переходов, включенных в обратном направлении.

Резистивные преобразователи представляют собой разновидность параметрических преобразователей, которые под воздействием измеряемой величины изменяют собственное электрическое сопротивление или сопротивление участка цепи.

Теоретическая механика, статика, динамика курс лекций

Основные понятия и аксиомы статики.

Плоская система сходящихся сил. Определение равнодействующей геометрическим способом.

Плоская система произвольно расположенных сил.

Шарнирно-неподвижная опора Опора допускает поворот вокруг шарнира и может быть заменена двумя составляющими силы вдоль осей координат.

Центр тяжести Иметь представление о системе параллельных сил и центре системы параллельных сил, о силе тяжести и центре тяжести.

Вращательное движение При вращательном движении все точки тела описывают окружности вокруг общей неподвижной оси.

Принцип кинетостатики (принцип Даламбера) Принцип кинетостатики используют для упрощения решения ряда технических задач.

Нагрузки внешние и внутренние, метод сечений.

Продольные и поперечные деформации. Закон Гука.

Предельные и допустимые напряжения Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная деформация).

Геометрические характеристики плоских сечений Иметь представление о физическом смысле и порядке определения осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Максимальные напряжения при кручении Из формулы для определения напряжений и эпюры распределения касательных напряжений при кручении видно, что максимальные напряжения возникают на поверхности.

Виды расчетов на прочность Существует два вида расчета на прочность.

Нормальные напряжения при изгибе. Расчеты на прочность.

Расчет круглого бруса на изгиб с кручением В случае расчета круглого бруса при действии изгиба и кручения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих случаях возникают на поверхности.

Сопротивление усталости Иметь представление об усталости материалов, о кривой усталости и пределе выносливости.

Начертательная геометрия выполнение графического задания

Выполнение сечений

Резьбовые изделия

Эскиз детали

Нанесение размеров на чертежах

Билеты по черчению

Практика выполнения технических чертежей

Длина изображения отрезка, параллельного плоскости проекций, равна длине самого отрезка

Комплексный чертеж на примере изображения точки Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений

Законы проекционной связи на комплексном чертеже

Основные геометрические фигуры Способы задания геометрических фигур. Два способа задания геометрических фигур: кинематический и статический. Кинематический способ основан на перемещении в пространстве точки или образующей линии по определенному закону. Закон перемещения задается направляющими элементами: точками, линиями или плоскостями. Совокупность образующей и направляющих называется определителем геометрической фигуры.

Вопросы к экзамену по черчению

Другая разновидность геометрических фигур частного положения – проецирующие прямые и плоскости: горизонтально проецирующие, фронтально проецирующие и профильно проецирующие

Кривая линия общего вида Ограничимся кривыми линиями общего вида. Под которыми следует понимать плоские и пространственные кривые, не имеющие определенно выраженного закона образования. Для задания таких линий требуется: теоретически бесконечное, а практически – разумное конечное число точек.

Поверхность вращения образуется вращением линии вокруг неподвижной оси

Взаимопринадлежность геометрических фигур Общие понятия взаимопринадлежности Элементарная (основная) задача на принадлежность, без которой бесполезно пытаться решать любую задачу на ту же тему, - это задача на принадлежность точки к плоскости или к любой криволинейной поверхности

Точка на линии Положение о том, что точка на прямой проецируется в точку на проекции этой прямой (одно из инвариантных свойств проецирования) справедливо и для кривой линии.

При построении линии на поверхности следует учитывать, что полностью или частично она может быть невидимой. Для наглядности и для удобства обводки чертежа невидимые проекции рекомендуется изображать в виде крестика. Должна соблюдаться и последовательность решения задачи

Пересечение геометрических фигур Пересечь геометрические фигуры – значит определить их общие точки и линии. И грамотно обвести чертеж с учетом видимости. Для этого совершенно необходимо хорошее усвоение пройденных тем таких, как принадлежность, особенности вырожденных проекций и видимость конкурирующих точек.

Пример. Построить сечение пирамиды

Пересечение геометрических фигур с привлечением посредников Сложнее решаются задачи на пересечение геометрических фигур, если ни одна из них не является проецирующей. В таких случаях трудно обойтись без привлечения третьих участников пересечения – так называемых посредников

Метод проецирующих секущих плоскостей

Пример . Построить линию пересечения плоскостей

Пример. Построить линию пересечения закрытого тора и полусферы

Метод концентрических сфер применяется для пересечения поверхностей вращения, у которых общая плоскость симметрии параллельна плоскости проекций. В этом случае сфера с центром в точке пересечения осей вращения соосна с поверхностями и пересекает их по окружностям.

Частный случай теоремы Г.Монжа Если две поверхности вращения 2-го порядка(конусы и цилиндры)описаны вокруг общей сферы, то они пересекаются по двум линиям того же порядка. Это могут быть эллипсы или параболы. Плоскости которые пересекаются по прямой, проходящей через точки пересечения линий касания сферы с заданными поверхностями.

Преобразование комплексного чертежа и способ прямоугольного треугольника

Способ вращения вокруг проецирующей прямой В процессе вращения геометрической фигуры каждая ее точка описывает в пространстве окружность, плоскость которой перпендикулярна к оси вращения, а центр – в точке пересечения оси и этой плоскости

Способ прямоугольного треугольника

Параллельность прямых и плоскостей Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Линия наибольшего наклона на плоскости

Классификация метрических задач (определение углов и расстояний) Решения метрических задач основаны на применении практически всех предыдущих разделов курса начертательной геометрии. Включая прежде всего взаимопринадлежность и пересечение геометрических фигур, параллельность и перпендикулярность и способы преобразования комплексного чертежа. Решить предыдущую задачу способом замены плоскостей проекций

Стандартная ортогональная аксонометрия Аксонометрия – это изображение предмета на плоскости общего положения П’ в системе аксонометрических осей проекций

Окружность в аксонометрии Окружность в плоскости уровня проецируется на аксонометрическую плоскость проекций в виде эллипса. При построении такой проекции необходимо учитывать направление большой оси эллипса, ее размеры и размеры малой оси.

Метод центрального проецирования

Проецирование точки на две и три плоскости проекций Если поместить точку А, находящуюся в пространстве, относительно двух плоскостей проекций П, и П2, опустив из нее перпендикуляры на эти плоскости, получают точки А, и А2, которые являются ортогональными проекциями точки А относительно плоскостей проекций П1, и П2. Они характеризуются координатами, которые числен но равны расстоянию от точки А до соответствующих плоскостей

Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства

Задание прямой в пространстве Прямая параллельна двум плоскостям проекций, т.е. перпендикулярна к третьей плоскости проекций. Все точки прямой имеют две постоянные координаты х, у или z. На одну из плоскостей проекций прямая проецируется в точку.

Следом прямой называется точка пересечения прямой с плоскостью проекции. Горизонтальным следом прямой называют точку пересечения прямой с горизонтальной плоскостью проекций

Взаимное положение прямых в пространстве Две прямые в пространстве могут быть параллельными, пересекающимися или скрещивающимися. Если две прямые параллельны, то их одноименные проекции взаимно параллельны

Задание плоскости Плоскость задается тремя произвольными точками, не принадлежащими одной прямой

Положение плоскости относительно плоскостей проекций Любая, произвольно взятая в пространстве, плоскость может занимать общее или частное положение. Плоскостью общего положения называется плоскость, которая не перпендикулярна ни к одной из плоскостей проекций

Признаки принадлежности точки и прямой плоскости Для определения принадлежности точки и прямой плоскости, расположенной в пространстве, следует руководствоваться следующими положениями

Взаимное положение двух плоскостей Две произвольные плоскости в пространстве по отношению друг к другу могут занимать два положения: плоскости пересекаются, при этом линия их пересечения всегда прямая; плоскости параллельны друг другу.

Определение взаимного положения прямой линии и плоскости Прямая линия и плоскость в пространстве относительно друг друга могут занимать следующие положения: прямая линия параллельна плоскости (частный случай — прямая лежит в плоскости); прямая линия пересекается с плоскостью (частный случай —прямая перпендикулярна к плоскости).

Задание: найти точку пересечения проецирующей прямой т с плоскостью

Примеры решения задач Задание: опустить перпендикуляр из точки А на плоскость   () и найти его основание точку В.

Способы преоразования проекций

Вращение вокруг проецирующей оси

Метод плоскопараллельного перемещения Применение метода вращения вокруг проецирующей оси при преобразовании нередко приводит к наложению на исходную новых проекций. При этом чтение чертежа представляет определенные сложности. Избавиться от указанного недостатка позволяет метод плоскопараллельного перемещения проекций фигуры

Метод вращения вокруг линии уровня Суть метода заключается в том, что осью вращения выбирается одна из линий уровня - горизонталь или фронталь плоскости или плоской фигуры. Таким образом, плоскость как бы поворачивается вокруг некоторой оси, принадлежащей этой плоскости, до положения, при которой эта плоскость становится параллельной одной из плоскостей проекций.

Метод совмещения плоскостей Этот метод является частным случаем метода вращения вокруг линии уровня. В качестве оси вращения выбирается линия пересечения плоскости, в которой лежит та или иная фигура, с одной из плоскостей проекций. Иначе говоря, осью вращения служит горизонтальный или фронтальный след плоскости

Задание: определить натуральную величину треугольника общего положения ABC, заданного проекциями вершин A1 B1 C1 и А2В2С2, а также угол наклона плоскости треугольника к П1.

Решение  методом плоскопараллельного перемещения Задача решается в два этапа. На первом этапе преобразовывают чертеж так, чтобы плоскость треугольника ABC стала перпендикулярна к одной из плоскостей проекций, т.е. должна в себе содержать прямую, перпендикулярную к этой плоскости.

Решение методом вращения вокруг линии уровня

Для решения задачи методом совмещения необходимо построить следы плоскости , которой принадлежит треугольник ABC. Для этого проводят в плоскости треугольника ABC фронталь   и находят горизонтальный след этой фронтали – N1.

Сечение многогранников плоскостью

Задание: определить сечение трёхгранной призмы плоскостью P(P1P2). Построить полную развёртку поверхности призмы и нанести на ней линию сечения.

Поверхность вращения общего вида образуется вращательным перемещением образующей линии вокруг неподвижной оси. Каждая точка образующей линии при вращении вокруг неподвижной оси описывает окружность с центром на оси вращения. Эти окружности называются параллелями.

Условные развертки Неразвертывающиеся поверхности не могут быть совмещены с плоскостью без разрывов и складок, т.е. теоретически они не имеют своей развертки. Поэтому говорят лишь об условном решении задачи по построению разверток неразвертывающихся поверхностей.

Задание: построить проекции и натуральную величину фигуры сечения поверхности конуса плоскостью Р

Задание: построить проекции фигуры сечения сферы плоскостью Р. Решение: плоскость Р является фронтально проецирующей. На фронтальную плоскость проекций окружность (фигура сечения) проецируется в виде отрезка прямой, на горизонтальную - в виде эллипса.

Пересечение прямой линии с поверхностью

Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра

Перевод секущей прямой в частное положение При пересечении поверхности сферы плоскостью в сечении получается окружность, которая проецируется на плоскости проекции в виде эллипсов или прямой и эллипса (если секущая плоскость - проецирующая).

Построение линии пересечения поверхностей Предложенные в настоящей работе задания охватывают задачи не на все методы построения линий пересечения поверхностей, а только наиболее распространенные.

Метод вспомогательных секущих плоскостей Этот метод применяется для построения линии пересечения двух поверхностей, когда секущие (параллельные) плоскости при пересечении с данными поверхностями образуют простые линии (прямую или окружность).

Метод эксцентрических сфер применяется для построения линии пересечении поверхностей вращения, у которых оси расположены в одной плоскости, являющейся плоскостью симметрии. При этом пересекающиеся поверхности должны иметь семейство круговых сечений.

Изображение предметов Приёмы изображения предметов изучаются в курсе начертательной геометрии, и предполагается, что студент уже имеет необходимые навыки построения изображений. Поэтому основное внимание следует обратить на правила и условности, установленные ГОСТами ЕСКД.

Дополнительный вид – изображение на плоскости, не параллельной ни одной из основных плоскостей проекций, применяется, если какая-либо часть предмета не может быть показана без искажения формы и размеров ни на одном из основных видов. Выносной элемент – дополнительное отдельное изображение какой-либо части предмета, требующей пояснений в отношении формы, размеров и иных данных.

Классификация разрезов В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы подразделяются на горизонтальные, вертикальные и наклонные.

Соединение части вида и части разреза Согласно ГОСТ 2.305-68 допускается соединять на одном изображении часть вида и часть соответствующего разреза, разделяя их сплошной волнистой линией, когда каждый из них является несимметричной фигурой Обозначение разрезов

Расположение сечений В зависимости от расположения сечения, не входящие в состав разреза, подразделяются на вынесенные и наложенные.

Построение проекций точек, расположенных на различных поверхностях Умение находить на всех изображениях чертежа проекции отдельных точек необходимо для того, чтобы при выполнении чертежа правильно строить проекции отдельных элементов детали.

Правильная  треугольная призма Построение проекций призмы следует начинать с основания. Рёбра и грани призмы перпендикулярны  плоскости П1, поэтому вид сверху представляет собой правильный треугольник, стороны которого являются горизонтальными проекциями боковых граней призмы, а вершины – горизонтальными проекциями её рёбер. Контурами главного вида (вида спереди) и вида слева являются прямоугольники

Конус  вращения На виде сверху конус изображается кругом, являющимся одновременно горизонтальной проекцией основания конуса и его боковой поверхности. Центр круга – горизонтальная проекция вершины конуса. Главный вид и вид слева – равнобедренные треугольники.

Конус,  сфера и тор Данные поверхности являются поверхностями вращения. Для построения проекций точек, принадлежащих таким поверхностям, целесообразно использовать проекции параллелей – окружностей, плоскости которых параллельны плоскостям проекций.

Построение проекций

Аксонометрические проекции

Для построения аксонометрической проекции точки требуется определить длины звеньев её аксонометрической координатной ломаной. Для изометрической проекции длины звеньев этой ломаной равны длинам соответствующих звеньев натуральной координатной ломаной.

Последовательность выполнения изображений в аксонометрии

Задача. Построение  трёх изображений и аксонометрической проекции предмета  по его описанию Смотреть порно бесплатно на UHtube без цензуры

Задача. Выполнение ломаного разреза Исходные данные: виды спереди и сверху какой-либо детали. На одном из видов заданы проекции секущих  плоскостей А-А.

Задача. Выполнение ступенчатого разреза

Особенности  нанесения размеров на чертежах литых деталей рассматриваются  при изучении темы «Эскизирование и рабочие чертежи». На этом этапе изучения дисциплины достаточно придерживаться принципа нанесения размеров, показанного на исходном изображении.

Построение рабочего чертежа вала по аксонометрическому изображению

Построение аксонометрического чертежа фигуры, заданной комплексным чертежом

Построение аксонометрической проекции сферы Очерком сферы в прямоугольных аксонометрических проекциях является окружность, а в косоугольных проекциях - неприемлемый для восприятия сферы эллипс.

Методические рекомендации к решению задачи Построить проекции поверхности, заданной проекциями геометрической части определителя. Построить недостающую проекцию линии, принадлежащей поверхности.

«Веркбунд» и первый дизайнер Петер Беренс

Архитектурный стиль в машиностроении

Эстетические задачи техники

Масштабность среды интерьер, экстерьер

Практические и лабораторные работы по выполнению чертежей в Autocad и Компас

Практическая работа № 18. Выполнение рабочего чертежа детали «Вал» по ее пространственной модели

Практическая работа № 19. Выполнение чертежа детали. Библиотека «Компас – Shaft – 2D»

Практическая работа № 20. Выполнение пространственной модели и чертежа

Практическая работа № 22. Выполнение спецификации в ручном режиме

Практическая работа № 23. Выполнение сборочного чертежа, содержащего соединения: болтовое, винтовое, шпилечное. Создание объектов спецификации, спецификации в полуавтоматическом режиме

Создание спецификации и подключение к ней сборочного чертежа

Практическая работа № 24. Выполнение пространственной модели сборочной единицы, добавление детали на месте, разнесение компонентов

Лабораторная работа №1 ВОЗМОЖНОСТИ СРЕДЫ. ПОЛЬЗОВАТЕЛЬСКИЙ ИНТЕРФЕЙС Цель работы: изучение функциональных особенностей Autocad и возможности практического использования его в качестве среды для проектирования 

Лабораторная работа № 3. Выполнение чертежа и пространственной модели

Лабораторная работа № 4. Выполнение сборочного чертежа и спецификации

Панели инструментов (Tool­bars) представляют собой графические элементы управления, состоящие из набора пиктограмм, каждая из которых предназначена для вызова отдельной команды.

Автоматизация проектирования зданий и сооружений в САПР Компас-3D

Создание помещения Для автоматического определения размеров площадей на планах зданий и coopужений и других целей создают специальный макрообъект - помещение.

План перекрытий Вооружить системой знаний и умений создания слоев, знать команды настроек параметров листа, размеров, уметь вставлять архитектурные библиотечные элементы: оси, стены, перегородки, окна; закрепить навыки работы с панелью Свойств, Менеджером библиотек, Компактной панелью, командами редактирования.

Создание спецификации плит-перекрытий

Изображение узла

Выполнение изображение лестницы. Цели занятия: закрепить навыки работы с программой Компас – 3D при выполнении строительных чертежей

Выполнение чертежа разреза здания

Петербургская академия художеств

Немецкий ренессанс

Кубофутуризм

СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ AutoCAD

Целью курса лабораторных работ по дисциплине "Начертательная геометрия. Инженерная графика. (раздел "Компьютерная графика")" является практическое освоение студентами технологии компьютерного проектирования, реализованной в среде универсальной графической системы AutoCAD. Программа AutoCAD является не только прикладной системой автоматизации чертежно-графических работ, но и мощным средством моделирования сложных каркасных, полигональных (поверхностных) и объемных (твердотельных) конструкций.
Лабораторная работа № 2 Команды рисования Перед началом работы необходимо выполнить установки основных параметров черчения: настройку устройства ввода (мыши), создание системы слоев и другие.

Команды рисования графических примитивов запускаются с помощью меню \Draw или с помощью панели инструментов Draw

Лабораторная работа № 3 Нанесение надписей Наряду с командами рисования важными являются команды нанесения текстов. AUTOCAD поддерживает два способа вывода текстовой информации в поле чертежа. Соответствующие команды находятся в меню \Draw\Text. Одна команда предназначена для ввода простых текстов из одной или нескольких строк. Вторая позволяет вводить и редактировать многострочные тексты.

Лабораторная работа № 4 Команды редактирования Команды редактирования предназначены для изменения формы, положения, цвета, типа линии и других характеристик существующих объектов. Условно их можно разделить на две группы: относительно простые команды редактирования (копирование, поворот, перемещение и т.д.) и команды, предназначенные для сложной модификации объектов (сопряжение линий, тиражирование и другие). Команды редактирования собраны в меню \Modify\.

Лабораторная работа № 5 Проставление размеров на чертеже AUTOCAD предоставляет возможность автоматизированного проставления размеров объектов на чертеже. Все команды, связанные с простановкой размеров, сосредоточены в меню \Dimension. Кроме того, доступна панель инструментов Dimension.

Лабораторная работа № 6 Работа с блоками чертежа Блоком называют один или множество разнородных объектов, объединенных в группу с помощью специальной команды. В блоки имеет смысл объединять взаимосвязанные объекты, вид (положение) которых не изменяется в ходе работы. Например, в виде блока может быть оформлена рамка и основная надпись чертежа. После создания блока, его копии можно разместить произвольно на плоскости чертежа или перенести (скопировать) в другой чертеж.